tao-test/app/taoQtiItem/test/integration/samples/xml/qtiv2p1/math/math2.xml

100 lines
4.2 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<!-- Thie example adapted from the PET Handbook, copyright University of Cambridge ESOL Examinations -->
<assessmentItem xmlns="http://www.imsglobal.org/xsd/imsqti_v2p1"
xmlns:m="http://www.w3.org/1998/Math/MathML"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.imsglobal.org/xsd/imsqti_v2p1 http://www.imsglobal.org/xsd/qti/qtiv2p1/imsqti_v2p1.xsd"
identifier="choice" title="Unattended Luggage" adaptive="false" timeDependent="false">
<responseDeclaration identifier="RESPONSE" cardinality="single" baseType="identifier">
<correctResponse>
<value>ChoiceA</value>
</correctResponse>
</responseDeclaration>
<outcomeDeclaration identifier="SCORE" cardinality="single" baseType="float">
<defaultValue>
<value>0</value>
</defaultValue>
</outcomeDeclaration>
<itemBody>
<p>Look at the text in the picture.</p>
<p>
<img src="images/sign.png" alt="NEVER LEAVE LUGGAGE UNATTENDED"/>
</p>
<m:math display="block">
<semantics>
<mtable>
<mtr>
<mtd columnalign="right">
<mrow>
<mi>sin</mi>
<mfenced close=")" open="(">
<mi>B</mi>
</mfenced>
</mrow>
</mtd>
<mtd columnalign="center">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mfrac>
<mi>b</mi>
<mi>a</mi>
</mfrac>
</mtd>
</mtr>
<mtr>
<mtd columnalign="right">
<mi>b</mi>
</mtd>
<mtd columnalign="center">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mi>a</mi>
<mrow>
<mi>sin</mi>
<mfenced close=")" open="(">
<mi>B</mi>
</mfenced>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd columnalign="right">
<mi>b</mi>
</mtd>
<mtd columnalign="center">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mrow>
<mi>ia</mi>
<mo>&#xd7;</mo>
<mi>sin</mi>
<mfenced close=")" open="(">
<mi>iB</mi>
</mfenced>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd columnalign="right"/>
<mtd columnalign="center">
<mo>=</mo>
</mtd>
<mtd columnalign="left">
<mi>fAns</mi>
</mtd>
</mtr>
</mtable>
<annotation encoding="SnuggleTeX">\begin{eqnarray*}
\\sin(B)&amp;=&amp;\frac{b}{a}\\
b&amp;=&amp;a\sin(B)\\
&amp;=&amp;\qv{ia}\times\sin(\qv{iB})
&amp;=&amp;\qv{fAns} \end{eqnarray*}</annotation>
</semantics>
</m:math>
</itemBody>
<responseProcessing
template="http://www.imsglobal.org/question/qti_v2p1/rptemplates/match_correct"/>
</assessmentItem>