2023-05-10 20:30:03 +02:00
|
|
|
import pandas
|
|
|
|
import os
|
2023-05-11 21:24:52 +02:00
|
|
|
from sacred import Experiment
|
|
|
|
from sacred.observers import MongoObserver
|
|
|
|
from sacred.observers import FileStorageObserver
|
2023-05-10 20:30:03 +02:00
|
|
|
from keras.applications.densenet import layers
|
|
|
|
import tensorflow
|
|
|
|
|
2023-05-11 21:24:52 +02:00
|
|
|
exint = Experiment('z-s434686-training')
|
|
|
|
|
|
|
|
exint.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017',
|
|
|
|
db_name='sacred'))
|
|
|
|
exint.observers.append(FileStorageObserver('my_runs'))
|
|
|
|
@exint.config
|
|
|
|
def my_config():
|
|
|
|
EPOCHS = int(os.environ['EPOCHS'])
|
2023-05-11 21:32:10 +02:00
|
|
|
|
2023-05-11 21:24:52 +02:00
|
|
|
|
|
|
|
@exint.main
|
2023-05-11 21:36:27 +02:00
|
|
|
def my_main(EPOCHS, _run):
|
2023-05-11 21:40:37 +02:00
|
|
|
_run.info["epochs"] = EPOCHS,
|
2023-05-11 21:30:50 +02:00
|
|
|
normalize = layers.Normalization()
|
2023-05-11 21:41:36 +02:00
|
|
|
train_data_x = pandas.read_csv('./X_train.csv')
|
2023-05-11 21:40:37 +02:00
|
|
|
_run.info["dataset"] = train_data_x
|
2023-05-11 21:29:38 +02:00
|
|
|
games_all = train_data_x.copy()
|
|
|
|
games_predict = train_data_x.pop('User_Score')
|
2023-05-11 21:24:52 +02:00
|
|
|
normalize.adapt(games_all)
|
|
|
|
norm_games_model = tensorflow.keras.Sequential([
|
|
|
|
normalize,
|
|
|
|
layers.Dense(64),
|
|
|
|
layers.Dense(1)
|
|
|
|
])
|
|
|
|
norm_games_model.compile(
|
|
|
|
loss=tensorflow.keras.losses.MeanSquaredError(),
|
|
|
|
optimizer=tensorflow.keras.optimizers.Adam())
|
|
|
|
|
|
|
|
norm_games_model.fit(games_all, games_predict, epochs=EPOCHS)
|
|
|
|
|
|
|
|
norm_games_model.save('test')
|
2023-05-11 21:52:50 +02:00
|
|
|
_run.add_artifact('test')
|
2023-05-11 21:24:52 +02:00
|
|
|
|
|
|
|
exint.run()
|
|
|
|
exint.add_artifact("test")
|
2023-05-11 21:44:38 +02:00
|
|
|
exint.add_source_file('./ium_z434686/train.py')
|