81 KiB
81 KiB
# Import required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sklearn
# Import necessary modules
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from math import sqrt
# Keras specific
import keras
from keras.models import Sequential
from keras.layers import Dense
in_columns = ['id_stacji', 'nazwa_stacji', 'typ_zbioru', 'rok', 'miesiąc']
df = pd.read_csv('train/in.tsv', names=in_columns, sep='\t')
len(df)
8760
df_test = pd.read_csv('test-A/in.tsv', names=in_columns, sep='\t')
len(df_test)
720
df = pd.concat([df,df_test])
len(df)
9480
df = df.drop(['nazwa_stacji','typ_zbioru'], axis=1)
x = pd.get_dummies(df,columns = ['id_stacji','rok','miesiąc'])
x
id_stacji_249180010 | id_stacji_249190560 | id_stacji_249200370 | id_stacji_249200490 | id_stacji_249220150 | id_stacji_249220180 | id_stacji_250190160 | id_stacji_250190390 | id_stacji_250210130 | id_stacji_251170090 | ... | miesiąc_3 | miesiąc_4 | miesiąc_5 | miesiąc_6 | miesiąc_7 | miesiąc_8 | miesiąc_9 | miesiąc_10 | miesiąc_11 | miesiąc_12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
715 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
716 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
717 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
718 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
719 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
9480 rows × 73 columns
x = x.iloc[:-720]
x
id_stacji_249180010 | id_stacji_249190560 | id_stacji_249200370 | id_stacji_249200490 | id_stacji_249220150 | id_stacji_249220180 | id_stacji_250190160 | id_stacji_250190390 | id_stacji_250210130 | id_stacji_251170090 | ... | miesiąc_3 | miesiąc_4 | miesiąc_5 | miesiąc_6 | miesiąc_7 | miesiąc_8 | miesiąc_9 | miesiąc_10 | miesiąc_11 | miesiąc_12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8755 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
8756 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
8757 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
8758 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8759 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
8760 rows × 73 columns
y = pd.read_csv('train/expected.tsv', sep='\t', names=['rainfall'])
#y = np.array(y).reshape(1,-1)
y
rainfall | |
---|---|
0 | 19.4 |
1 | 43.2 |
2 | 72.2 |
3 | 25.3 |
4 | 89.3 |
... | ... |
8755 | 114.9 |
8756 | 101.2 |
8757 | 20.4 |
8758 | 93.2 |
8759 | 46.9 |
8760 rows × 1 columns
# Define model
model = Sequential()
model.add(Dense(16, input_dim=73, activation= "relu"))
model.add(Dense(32, activation= "relu"))
model.add(Dense(64, activation= "relu"))
model.add(Dense(32, activation= "relu"))
model.add(Dense(16, activation= "relu"))
model.add(Dense(1))
#model.summary() #Print model Summary
df['id_stacji'] = np.asarray(df['id_stacji']).astype('float32')
df['rok'] = np.asarray(df['rok']).astype('float32')
df['miesiąc'] = np.asarray(df['miesiąc']).astype('float32')
y = np.asarray(y).astype('float32')
[print(i.shape, i.dtype) for i in model.inputs]
[print(o.shape, o.dtype) for o in model.outputs]
[print(l.name, l.input_shape, l.dtype) for l in model.layers]
(None, 73) <dtype: 'float32'> (None, 1) <dtype: 'float32'> dense (None, 73) float32 dense_1 (None, 16) float32 dense_2 (None, 32) float32 dense_3 (None, 64) float32 dense_4 (None, 32) float32 dense_5 (None, 16) float32
[None, None, None, None, None, None]
model.compile(loss= "mean_squared_error" , optimizer="adam", metrics=["mean_squared_error"])
model.fit(x, y, epochs=100)
Epoch 1/100 274/274 [==============================] - 1s 1ms/step - loss: 1904.0205 - mean_squared_error: 1904.0205 Epoch 2/100 274/274 [==============================] - 0s 1ms/step - loss: 977.0018 - mean_squared_error: 977.0018 Epoch 3/100 274/274 [==============================] - 0s 1ms/step - loss: 930.0125 - mean_squared_error: 930.0125 Epoch 4/100 274/274 [==============================] - 0s 1ms/step - loss: 902.6553 - mean_squared_error: 902.6553 Epoch 5/100 274/274 [==============================] - 0s 1ms/step - loss: 863.2485 - mean_squared_error: 863.2485 Epoch 6/100 274/274 [==============================] - 0s 1ms/step - loss: 811.9504 - mean_squared_error: 811.9504 Epoch 7/100 274/274 [==============================] - 0s 1ms/step - loss: 770.9260 - mean_squared_error: 770.9260 Epoch 8/100 274/274 [==============================] - 0s 1ms/step - loss: 724.6091 - mean_squared_error: 724.6091 Epoch 9/100 274/274 [==============================] - 0s 1ms/step - loss: 692.6209 - mean_squared_error: 692.6209 Epoch 10/100 274/274 [==============================] - 0s 1ms/step - loss: 659.7095 - mean_squared_error: 659.7095 Epoch 11/100 274/274 [==============================] - 0s 1ms/step - loss: 625.7371 - mean_squared_error: 625.7371 Epoch 12/100 274/274 [==============================] - 0s 1ms/step - loss: 602.4116 - mean_squared_error: 602.4116 Epoch 13/100 274/274 [==============================] - 0s 1ms/step - loss: 577.0346 - mean_squared_error: 577.0346 Epoch 14/100 274/274 [==============================] - 0s 1ms/step - loss: 552.9323 - mean_squared_error: 552.9323 Epoch 15/100 274/274 [==============================] - 0s 1ms/step - loss: 529.7372 - mean_squared_error: 529.7372 Epoch 16/100 274/274 [==============================] - 0s 1ms/step - loss: 515.2844 - mean_squared_error: 515.2844 Epoch 17/100 274/274 [==============================] - 0s 1ms/step - loss: 501.1700 - mean_squared_error: 501.1700 Epoch 18/100 274/274 [==============================] - 0s 1ms/step - loss: 489.9219 - mean_squared_error: 489.9219 Epoch 19/100 274/274 [==============================] - 0s 1ms/step - loss: 484.0696 - mean_squared_error: 484.0696 Epoch 20/100 274/274 [==============================] - 0s 1ms/step - loss: 470.3400 - mean_squared_error: 470.3400 Epoch 21/100 274/274 [==============================] - 0s 1ms/step - loss: 459.1194 - mean_squared_error: 459.1194 Epoch 22/100 274/274 [==============================] - 0s 1ms/step - loss: 455.5881 - mean_squared_error: 455.5881 Epoch 23/100 274/274 [==============================] - 0s 1ms/step - loss: 446.4247 - mean_squared_error: 446.4247 Epoch 24/100 274/274 [==============================] - 0s 1ms/step - loss: 440.6260 - mean_squared_error: 440.6260 Epoch 25/100 274/274 [==============================] - 0s 1ms/step - loss: 434.9443 - mean_squared_error: 434.9443 Epoch 26/100 274/274 [==============================] - 0s 1ms/step - loss: 429.9223 - mean_squared_error: 429.9223 Epoch 27/100 274/274 [==============================] - 0s 1ms/step - loss: 424.0781 - mean_squared_error: 424.0781 Epoch 28/100 274/274 [==============================] - 0s 1ms/step - loss: 420.9750 - mean_squared_error: 420.9750 Epoch 29/100 274/274 [==============================] - 0s 1ms/step - loss: 416.1357 - mean_squared_error: 416.1357 Epoch 30/100 274/274 [==============================] - 0s 1ms/step - loss: 409.1339 - mean_squared_error: 409.1339 Epoch 31/100 274/274 [==============================] - 0s 1ms/step - loss: 404.7644 - mean_squared_error: 404.7644 Epoch 32/100 274/274 [==============================] - 0s 1ms/step - loss: 403.4354 - mean_squared_error: 403.4354 Epoch 33/100 274/274 [==============================] - 0s 1ms/step - loss: 398.6223 - mean_squared_error: 398.6223 Epoch 34/100 274/274 [==============================] - 0s 1ms/step - loss: 391.9509 - mean_squared_error: 391.9509 Epoch 35/100 274/274 [==============================] - 0s 1ms/step - loss: 391.3186 - mean_squared_error: 391.3186 Epoch 36/100 274/274 [==============================] - 0s 1ms/step - loss: 388.1175 - mean_squared_error: 388.1175 Epoch 37/100 274/274 [==============================] - 0s 1ms/step - loss: 385.9730 - mean_squared_error: 385.9730 Epoch 38/100 274/274 [==============================] - 0s 1ms/step - loss: 382.0468 - mean_squared_error: 382.0468 Epoch 39/100 274/274 [==============================] - 0s 1ms/step - loss: 376.9197 - mean_squared_error: 376.9197 Epoch 40/100 274/274 [==============================] - 0s 1ms/step - loss: 378.0434 - mean_squared_error: 378.0434 Epoch 41/100 274/274 [==============================] - 0s 1ms/step - loss: 372.7451 - mean_squared_error: 372.7451 Epoch 42/100 274/274 [==============================] - 0s 1ms/step - loss: 368.2292 - mean_squared_error: 368.2292 Epoch 43/100 274/274 [==============================] - 0s 1ms/step - loss: 369.8233 - mean_squared_error: 369.8233 Epoch 44/100 274/274 [==============================] - 0s 1ms/step - loss: 365.3695 - mean_squared_error: 365.3695 Epoch 45/100 274/274 [==============================] - 0s 1ms/step - loss: 363.1947 - mean_squared_error: 363.1947 Epoch 46/100 274/274 [==============================] - 0s 1ms/step - loss: 358.6509 - mean_squared_error: 358.6509 Epoch 47/100 274/274 [==============================] - 0s 1ms/step - loss: 363.4928 - mean_squared_error: 363.4928 Epoch 48/100 274/274 [==============================] - 0s 1ms/step - loss: 359.9735 - mean_squared_error: 359.9735 Epoch 49/100 274/274 [==============================] - 0s 1ms/step - loss: 353.2738 - mean_squared_error: 353.2738 Epoch 50/100 274/274 [==============================] - 0s 1ms/step - loss: 350.3524 - mean_squared_error: 350.3524 Epoch 51/100 274/274 [==============================] - 0s 1ms/step - loss: 349.1338 - mean_squared_error: 349.1338 Epoch 52/100 274/274 [==============================] - 0s 1ms/step - loss: 351.0474 - mean_squared_error: 351.0474 Epoch 53/100 274/274 [==============================] - 0s 1ms/step - loss: 341.8802 - mean_squared_error: 341.8802 Epoch 54/100 274/274 [==============================] - 0s 1ms/step - loss: 341.5201 - mean_squared_error: 341.5201 Epoch 55/100 274/274 [==============================] - 0s 1ms/step - loss: 339.8927 - mean_squared_error: 339.8927 Epoch 56/100 274/274 [==============================] - 0s 1ms/step - loss: 337.5977 - mean_squared_error: 337.5977 Epoch 57/100 274/274 [==============================] - 0s 1ms/step - loss: 341.8250 - mean_squared_error: 341.8250 Epoch 58/100 274/274 [==============================] - 0s 1ms/step - loss: 334.7910 - mean_squared_error: 334.7910 Epoch 59/100 274/274 [==============================] - 0s 1ms/step - loss: 333.3398 - mean_squared_error: 333.3398 Epoch 60/100 274/274 [==============================] - 0s 1ms/step - loss: 330.1293 - mean_squared_error: 330.1293 Epoch 61/100 274/274 [==============================] - 0s 1ms/step - loss: 331.5085 - mean_squared_error: 331.5085 Epoch 62/100 274/274 [==============================] - 0s 1ms/step - loss: 327.4076 - mean_squared_error: 327.4076 Epoch 63/100 274/274 [==============================] - 0s 1ms/step - loss: 328.1978 - mean_squared_error: 328.1978 Epoch 64/100 274/274 [==============================] - 0s 1ms/step - loss: 322.5495 - mean_squared_error: 322.5495 Epoch 65/100 274/274 [==============================] - 0s 1ms/step - loss: 324.4060 - mean_squared_error: 324.4060 Epoch 66/100 274/274 [==============================] - 0s 1ms/step - loss: 319.2129 - mean_squared_error: 319.2129 Epoch 67/100 274/274 [==============================] - 0s 1ms/step - loss: 320.8315 - mean_squared_error: 320.8315 Epoch 68/100 274/274 [==============================] - 0s 1ms/step - loss: 315.9987 - mean_squared_error: 315.9987 Epoch 69/100 274/274 [==============================] - 0s 1ms/step - loss: 314.6494 - mean_squared_error: 314.6494 Epoch 70/100 274/274 [==============================] - 0s 1ms/step - loss: 310.7572 - mean_squared_error: 310.7572 Epoch 71/100 274/274 [==============================] - 0s 1ms/step - loss: 310.8293 - mean_squared_error: 310.8293 Epoch 72/100 274/274 [==============================] - 0s 1ms/step - loss: 310.2863 - mean_squared_error: 310.2863 Epoch 73/100 274/274 [==============================] - 0s 1ms/step - loss: 309.2907 - mean_squared_error: 309.2907 Epoch 74/100 274/274 [==============================] - 0s 1ms/step - loss: 306.9155 - mean_squared_error: 306.9155 Epoch 75/100 274/274 [==============================] - 0s 1ms/step - loss: 304.8138 - mean_squared_error: 304.8138 Epoch 76/100 274/274 [==============================] - 0s 1ms/step - loss: 303.4693 - mean_squared_error: 303.4693 Epoch 77/100 274/274 [==============================] - 0s 1ms/step - loss: 302.1253 - mean_squared_error: 302.1253 Epoch 78/100 274/274 [==============================] - 0s 1ms/step - loss: 300.5882 - mean_squared_error: 300.5882 Epoch 79/100 274/274 [==============================] - 0s 1ms/step - loss: 300.8849 - mean_squared_error: 300.8849 Epoch 80/100 274/274 [==============================] - 0s 1ms/step - loss: 297.9424 - mean_squared_error: 297.9424 Epoch 81/100 274/274 [==============================] - 0s 1ms/step - loss: 296.6845 - mean_squared_error: 296.6845 Epoch 82/100 274/274 [==============================] - 0s 1ms/step - loss: 301.2429 - mean_squared_error: 301.2429 Epoch 83/100 274/274 [==============================] - 0s 1ms/step - loss: 294.7325 - mean_squared_error: 294.7325 Epoch 84/100 274/274 [==============================] - 0s 1ms/step - loss: 293.9087 - mean_squared_error: 293.9087 Epoch 85/100 274/274 [==============================] - 0s 1ms/step - loss: 294.8573 - mean_squared_error: 294.8573 Epoch 86/100 274/274 [==============================] - 0s 1ms/step - loss: 291.5350 - mean_squared_error: 291.5350 Epoch 87/100 274/274 [==============================] - 0s 1ms/step - loss: 288.5298 - mean_squared_error: 288.5298 Epoch 88/100 274/274 [==============================] - 0s 1ms/step - loss: 290.0951 - mean_squared_error: 290.0951 Epoch 89/100 274/274 [==============================] - 0s 1ms/step - loss: 286.3828 - mean_squared_error: 286.3828 Epoch 90/100 274/274 [==============================] - 0s 1ms/step - loss: 282.4638 - mean_squared_error: 282.4638 Epoch 91/100 274/274 [==============================] - 0s 1ms/step - loss: 290.5275 - mean_squared_error: 290.5275 Epoch 92/100 274/274 [==============================] - 0s 1ms/step - loss: 282.0305 - mean_squared_error: 282.0305 Epoch 93/100 274/274 [==============================] - 0s 1ms/step - loss: 281.5406 - mean_squared_error: 281.5406 Epoch 94/100 274/274 [==============================] - 0s 1ms/step - loss: 287.6223 - mean_squared_error: 287.6223 Epoch 95/100 274/274 [==============================] - 0s 1ms/step - loss: 277.7972 - mean_squared_error: 277.7972 Epoch 96/100 274/274 [==============================] - 0s 1ms/step - loss: 279.9403 - mean_squared_error: 279.9403 Epoch 97/100 274/274 [==============================] - 0s 1ms/step - loss: 275.0088 - mean_squared_error: 275.0088 Epoch 98/100 274/274 [==============================] - 0s 1ms/step - loss: 276.8479 - mean_squared_error: 276.8479 Epoch 99/100 274/274 [==============================] - 0s 1ms/step - loss: 275.8300 - mean_squared_error: 275.8300 Epoch 100/100 274/274 [==============================] - 0s 1ms/step - loss: 274.4589 - mean_squared_error: 274.4589
<keras.callbacks.History at 0x2ae269e2610>
import math
math.sqrt(298.7904)
17.28555466278129
x_test = pd.read_csv('test-A/in.tsv', sep='\t', names=in_columns)
#y_test = pd.read_csv('dev-0/expected.tsv', sep='\t',names=['rainfall'])
#x_test = x_test.drop(['nazwa_stacji', 'typ_zbioru'],axis=1)
df_train = pd.read_csv('train/in.tsv', names=in_columns, sep='\t')
x_test = pd.concat([x_test,df_train])
len(x_test)
9480
x_test = x_test.drop(['nazwa_stacji', 'typ_zbioru'],axis=1)
len(x_test)
9480
x_test = pd.get_dummies(x_test,columns = ['id_stacji','rok','miesiąc'])
x_test
id_stacji_249180010 | id_stacji_249190560 | id_stacji_249200370 | id_stacji_249200490 | id_stacji_249220150 | id_stacji_249220180 | id_stacji_250190160 | id_stacji_250190390 | id_stacji_250210130 | id_stacji_251170090 | ... | miesiąc_3 | miesiąc_4 | miesiąc_5 | miesiąc_6 | miesiąc_7 | miesiąc_8 | miesiąc_9 | miesiąc_10 | miesiąc_11 | miesiąc_12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8755 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
8756 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
8757 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
8758 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
8759 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
9480 rows × 73 columns
x_test = x_test.iloc[:-8760]
x_test
id_stacji_249180010 | id_stacji_249190560 | id_stacji_249200370 | id_stacji_249200490 | id_stacji_249220150 | id_stacji_249220180 | id_stacji_250190160 | id_stacji_250190390 | id_stacji_250210130 | id_stacji_251170090 | ... | miesiąc_3 | miesiąc_4 | miesiąc_5 | miesiąc_6 | miesiąc_7 | miesiąc_8 | miesiąc_9 | miesiąc_10 | miesiąc_11 | miesiąc_12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
715 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
716 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
717 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
718 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
719 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ... | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
720 rows × 73 columns
pred= model.predict(x_test)
23/23 [==============================] - 0s 909us/step
pred= model.predict(x_test)
out = pd.DataFrame(pred)
out.to_csv('test-A/out.tsv',sep='\t',header=False, index=False)
23/23 [==============================] - 0s 955us/step