2021-05-14 04:01:11 +02:00
|
|
|
import sys
|
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
import os.path
|
|
|
|
|
|
|
|
from tensorflow import keras
|
|
|
|
from tensorflow.keras import layers
|
|
|
|
from tensorflow.keras.layers.experimental import preprocessing
|
|
|
|
|
|
|
|
# Wczytanie danych
|
|
|
|
test_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.test")
|
|
|
|
|
|
|
|
columns_to_use = ['Year', 'Runtime', 'Netflix']
|
|
|
|
test_X = tf.convert_to_tensor(test_data[columns_to_use])
|
|
|
|
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
|
|
|
|
|
|
|
|
model = tf.keras.models.load_model('linear_regression.h5')
|
|
|
|
|
|
|
|
scores = model.evaluate(x=test_X,
|
|
|
|
y=test_Y)
|
|
|
|
|
2021-05-14 04:16:17 +02:00
|
|
|
with open('rmse.txt', 'w') as file:
|
2021-05-14 04:01:11 +02:00
|
|
|
for idx, score in enumerate(scores):
|
2021-05-14 04:16:17 +02:00
|
|
|
file.write(str(score))
|