239 lines
7.6 KiB
Plaintext
239 lines
7.6 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "f73a28ea",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"KENLM_BUILD_PATH='/home/students/s434708/kenlm/build'"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "9fc5cda3",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Preprocessing danych"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "d42ddd87",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import csv\n",
|
|
"import regex as re"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "f84be210",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def clean_text(text):\n",
|
|
" text = text.lower().replace('-\\\\n', '').replace('\\\\n', ' ')\n",
|
|
" text = re.sub(r'\\p{P}', '', text)\n",
|
|
"\n",
|
|
" return text"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "de0c12d6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"train_data = pd.read_csv('train/in.tsv.xz', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
|
|
"train_labels = pd.read_csv('train/expected.tsv', sep='\\t', error_bad_lines=False, warn_bad_lines=False, header=None, quoting=csv.QUOTE_NONE)\n",
|
|
"\n",
|
|
"train_data = train_data[[6, 7]]\n",
|
|
"train_data = pd.concat([train_data, train_labels], axis=1)\n",
|
|
"\n",
|
|
"train_data['text'] = train_data[6] + train_data[0] + train_data[7]\n",
|
|
"train_data = train_data[['text']]\n",
|
|
"\n",
|
|
"with open('processed_train.txt', 'w') as file:\n",
|
|
" for _, row in train_data.iterrows():\n",
|
|
" text = clean_text(str(row['text']))\n",
|
|
" file.write(text + '\\n')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "846b6b42",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Model kenLM"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"id": "3c74d4be",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"=== 1/5 Counting and sorting n-grams ===\n",
|
|
"Reading /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/processed_train.txt\n",
|
|
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
"********************************Warning: <s> appears in the input. All instances of <s>, </s>, and <unk> will be interpreted as whitespace.\n",
|
|
"********************************************************************\n",
|
|
"Unigram tokens 135911223 types 4381594\n",
|
|
"=== 2/5 Calculating and sorting adjusted counts ===\n",
|
|
"Chain sizes: 1:52579128 2:1295655936 3:2429355008 4:3886967808 5:5668495360\n",
|
|
"Statistics:\n",
|
|
"1 4381594 D1=0.841838 D2=1.01787 D3+=1.21057\n",
|
|
"2 26800631 D1=0.836734 D2=1.01657 D3+=1.19437\n",
|
|
"3 69811700 D1=0.878562 D2=1.11227 D3+=1.27889\n",
|
|
"4 104063034 D1=0.931257 D2=1.23707 D3+=1.36664\n",
|
|
"5 119487533 D1=0.938146 D2=1.3058 D3+=1.41614\n",
|
|
"Memory estimate for binary LM:\n",
|
|
"type MB\n",
|
|
"probing 6752 assuming -p 1.5\n",
|
|
"probing 7917 assuming -r models -p 1.5\n",
|
|
"trie 3572 without quantization\n",
|
|
"trie 2120 assuming -q 8 -b 8 quantization \n",
|
|
"trie 3104 assuming -a 22 array pointer compression\n",
|
|
"trie 1652 assuming -a 22 -q 8 -b 8 array pointer compression and quantization\n",
|
|
"=== 3/5 Calculating and sorting initial probabilities ===\n",
|
|
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
|
|
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
"####################################################################################################\n",
|
|
"=== 4/5 Calculating and writing order-interpolated probabilities ===\n",
|
|
"Chain sizes: 1:52579128 2:428810096 3:1396234000 4:2497512816 5:3345650924\n",
|
|
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
"####################################################################################################\n",
|
|
"=== 5/5 Writing ARPA model ===\n",
|
|
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
"----------------------------------------------------------------------------------------------------Last input should have been poison. The program should end soon with an error. If it doesn't, there's a bug.\n",
|
|
"terminate called after throwing an instance of 'util::FDException'\n",
|
|
" what(): /home/students/s434708/kenlm/util/file.cc:228 in void util::WriteOrThrow(int, const void*, std::size_t) threw FDException because `ret < 1'.\n",
|
|
"No space left on device in /home/students/s434708/Desktop/Modelowanie Języka/challenging-america-word-gap-prediction-kenlm/model.arpa while writing 8189 bytes\n",
|
|
"/bin/bash: line 1: 26725 Aborted /home/students/s434708/kenlm/build/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!$KENLM_BUILD_PATH/bin/lmplz -o 5 --skip_symbols < processed_train.txt > model.arpa"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "dc65780b",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Reading model.arpa\n",
|
|
"----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100\n",
|
|
"****************************************************************************************************\n",
|
|
"/home/students/s434708/kenlm/util/file.cc:86 in int util::CreateOrThrow(const char*) threw ErrnoException because `-1 == (ret = open(name, 0100 | 01000 | 02, 0400 | 0200 | (0400 >> 3) | ((0400 >> 3) >> 3)))'.\n",
|
|
"No space left on device while creating model.binary Byte: 94\n",
|
|
"ERROR\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"!$KENLM_BUILD_PATH/bin/build_binary model.arpa model.binary"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "2087eb80",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!rm processed_train.txt"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 8,
|
|
"id": "4ba1e592",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"!rm model.arpa"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"id": "e41f7951",
|
|
"metadata": {},
|
|
"source": [
|
|
"### Predykcje"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6865301b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import kenlm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "e32de662",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"test_str = 'really good'\n",
|
|
"\n",
|
|
"model = kenlm.Model('model.binary')\n",
|
|
"print(model.score(test_str, bos = True, eos = True))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "a18b6ebd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"for i in model.full_scores(test_str):\n",
|
|
" print(i)"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.10"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|