2019SZI-Projekt/Logic/TrashRecognition/ImageClassification.py

173 lines
5.3 KiB
Python
Raw Normal View History

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import numpy as np
import tensorflow as tf
def load_graph(model_file):
graph = tf.Graph()
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def)
return graph
def read_tensor_from_image_file(file_name,
input_height=299,
input_width=299,
input_mean=0,
input_std=255):
input_name = "file_reader"
output_name = "normalized"
file_reader = tf.read_file(file_name, input_name)
if file_name.endswith(".png"):
image_reader = tf.image.decode_png(
file_reader, channels=3, name="png_reader")
elif file_name.endswith(".gif"):
image_reader = tf.squeeze(
tf.image.decode_gif(file_reader, name="gif_reader"))
elif file_name.endswith(".bmp"):
image_reader = tf.image.decode_bmp(file_reader, name="bmp_reader")
else:
image_reader = tf.image.decode_jpeg(
file_reader, channels=3, name="jpeg_reader")
float_caster = tf.cast(image_reader, tf.float32)
dims_expander = tf.expand_dims(float_caster, 0)
resized = tf.image.resize_bilinear(dims_expander, [input_height, input_width])
normalized = tf.divide(tf.subtract(resized, [input_mean]), [input_std])
sess = tf.Session()
result = sess.run(normalized)
return result
def load_labels(label_file):
label = []
proto_as_ascii_lines = tf.gfile.GFile(label_file).readlines()
for l in proto_as_ascii_lines:
label.append(l.rstrip())
return label
def classify(model_file="Model/graph.pb",
label_file="Model/graph_labels.txt",
2019-06-09 22:49:49 +02:00
input_height=299,
input_width=299,
input_mean=128,
input_std=128,
input_layer="Mul", #"input",
2019-06-09 22:49:49 +02:00
output_layer="final_result"): # "InceptionV3/Predictions/Reshape_1"):
"""Returns list of tuples consisting of name of file, category and certainity (0 - 1)"""
graph = load_graph(model_file)
files = []
for filename in os.listdir('Images/TestImages'):
t = read_tensor_from_image_file(
f'Images/TestImages/{filename}',
input_height=input_height,
input_width=input_width,
input_mean=input_mean,
input_std=input_std)
input_name = "import/" + input_layer
output_name = "import/" + output_layer
input_operation = graph.get_operation_by_name(input_name)
output_operation = graph.get_operation_by_name(output_name)
with tf.Session(graph=graph) as sess:
results = sess.run(output_operation.outputs[0], {
input_operation.outputs[0]: t
})
results = np.squeeze(results)
top_k = results.argsort()[-5:][::-1]
labels = load_labels(label_file)
files.append((filename, labels[top_k[0]], results[top_k[0]]))
print(f'{filename}: {labels[top_k[0]]} with {results[top_k[0]] * 100}% certainity')
return files
if __name__ == "__main__":
model_file = "Model/graph.pb"
label_file = "Model/graph_labels.txt"
input_height = 299
input_width = 299
input_mean = 128
input_std = 128
input_layer = "input"
output_layer = "InceptionV3/Predictions/Reshape_1"
parser = argparse.ArgumentParser()
parser.add_argument("--graph",
default="Model/graph.pb",
help="graph/model to be executed")
parser.add_argument("--labels",
default="Model/graph_labels.txt",
help="name of file containing labels")
parser.add_argument("--input_height", type=int, help="input height")
parser.add_argument("--input_width", type=int, help="input width")
parser.add_argument("--input_mean", type=int, help="input mean")
parser.add_argument("--input_std", type=int, help="input std")
parser.add_argument("--input_layer",
default="Mul",
help="name of input layer")
parser.add_argument("--output_layer",
default="final_result",
help="name of output layer")
args = parser.parse_args()
if args.graph:
model_file = args.graph
if args.labels:
label_file = args.labels
if args.input_height:
input_height = args.input_height
if args.input_width:
input_width = args.input_width
if args.input_mean:
input_mean = args.input_mean
if args.input_std:
input_std = args.input_std
if args.input_layer:
input_layer = args.input_layer
if args.output_layer:
output_layer = args.output_layer
classify(model_file=model_file, label_file=label_file, input_height=input_height, input_width=input_width,
2019-06-09 22:49:49 +02:00
input_mean=input_mean, input_std=input_std, input_layer=input_layer, output_layer=output_layer)
# for i in top_k:
# print(labels[i], results[i])