7.0 KiB
7.0 KiB
from torchtext.vocab import build_vocab_from_iterator
from torch.utils.data import DataLoader
import torch
from torch import nn
import pandas as pd
import nltk
import regex as re
import csv
import itertools
from nltk import word_tokenize
from os.path import exists
def clean(text):
text = str(text).strip().lower()
text = re.sub("’|>|<|\.|\\\\\\\\|\"|”|-|,|\*|:|\/", "", text)
text = text.replace('\\\\\\\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have")
text = text.replace("'", "")
return text
def get_words_from_line(line, specials = True):
line = line.rstrip()
if specials:
yield '<s>'
for m in re.finditer(r'[\p{L}0-9\*]+|\p{P}+', line):
yield m.group(0).lower()
if specials:
yield '</s>'
def get_word_lines_from_data(d):
for line in d:
yield get_words_from_line(line)
class SimpleBigramNeuralLanguageModel(torch.nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
def look_ahead_iterator(gen):
w1 = None
for item in gen:
if w1 is not None:
yield (w1, item)
w1 = item
class Bigrams(torch.utils.data.IterableDataset):
def __init__(self, data, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_data(data),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.data = data
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_data(self.data))))
# ładowanie danych treningowych
in_file = 'train/in.tsv.xz'
out_file = 'train/expected.tsv'
X_train = pd.read_csv(in_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=200000, on_bad_lines="skip", encoding="UTF-8")
Y_train = pd.read_csv(out_file, sep='\t', header=None, quoting=csv.QUOTE_NONE, nrows=200000, on_bad_lines="skip", encoding="UTF-8")
X_train = X_train[[6, 7]]
X_train = pd.concat([X_train, Y_train], axis=1)
X_train = X_train[6] + X_train[0] + X_train[7]
X_train = X_train.apply(clean)
vocab_size = 30000
embed_size = 150
Dataset = Bigrams(X_train, vocab_size)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
if(not exists('nn_model2.bin')):
data = DataLoader(Dataset, batch_size=8000)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for i in range(2):
print(f" Epoka {i}--------------------------------------------------------")
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), 'nn_model2.bin')
else:
model.load_state_dict(torch.load('nn_model2.bin'))
vocab = Dataset.vocab
# nltk.download('punkt')
def predict_word(ws):
ixs = torch.tensor(vocab.forward(ws)).to(device)
out = model(ixs)
top = torch.topk(out[0], 8)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
pred_str = ""
for word, prob in list(zip(top_words, top_probs)):
pred_str += f"{word}:{prob} "
# pred_str += f':0.01'
return pred_str
def word_gap_prediction(file):
X_test = pd.read_csv(f'{file}/in.tsv.xz', sep='\t', header=None, quoting=csv.QUOTE_NONE, on_bad_lines='skip', encoding="UTF-8")[6]
X_test = X_test.apply(clean)
with open(f'{file}/out.tsv', "w+", encoding="UTF-8") as f:
for row in X_test:
result = {}
before = None
for before in get_words_from_line(clean(str(row)), False):
pass
before = [before]
if(len(before) < 1):
pred_str = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else:
pred_str = predict_word(before)
pred_str = pred_str.strip()
f.write(pred_str + "\n")
word_gap_prediction("dev-0/")
word_gap_prediction("test-A/")