ium_434732/mongoObserver.py

86 lines
3.0 KiB
Python
Raw Permalink Normal View History

2021-05-15 17:01:32 +02:00
import torch
from torch import nn
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sacred import Experiment
from sacred.observers import MongoObserver
np.set_printoptions(suppress=False)
ex = Experiment("434732-mongo", interactive=False, save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
@ex.config
def my_config():
epochs = 5
batch_size = 10
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
@ex.capture
2021-05-15 17:09:20 +02:00
def readAndtrain(epochs, batch_size, _run):
2021-05-15 17:01:32 +02:00
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytrain = train['DEATH_EVENT'].astype(np.float32)
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytest = test['DEATH_EVENT'].astype(np.float32)
xTrain = torch.from_numpy(xtrain.values)
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
xTest = torch.from_numpy(xtest.values)
yTest = torch.from_numpy(ytest.values)
learning_rate = 0.002
input_dim = 11
output_dim = 1
2021-05-15 17:24:42 +02:00
_run.log_scalar("Batch", str(batch_size))
_run.log_scalar("epoch", str(epochs))
2021-05-15 17:01:32 +02:00
model = LogisticRegressionModel(input_dim, output_dim)
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
2021-05-15 17:09:20 +02:00
for epoch in range(epochs):
2021-05-15 17:01:32 +02:00
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(xTrain)
# Compute Loss
loss = criterion(y_pred, yTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
2021-05-15 17:24:42 +02:00
_run.log_scalar("Lost", str(loss.item()))
2021-05-15 17:01:32 +02:00
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
prediction= model(xTest)
2021-05-15 17:24:42 +02:00
_run.log_scalar("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
# _run.log_scalar("F1", str(f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None)))
2021-05-15 17:01:32 +02:00
print("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
2021-05-15 17:24:42 +02:00
# print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
2021-05-15 17:01:32 +02:00
@ex.automain
2021-05-15 17:05:33 +02:00
def my_main(epochs, batch_size, _run):
2021-05-15 17:01:32 +02:00
readAndtrain()
ex.run()
ex.add_artifact('DEATH_EVENT.pth')