Scared
Some checks failed
s434732-evaluation/pipeline/head There was a failure building this commit
s434732-training/pipeline/head There was a failure building this commit

This commit is contained in:
s434732 2021-05-15 17:01:32 +02:00
parent f00f35a936
commit 1611dffa1b
4 changed files with 89 additions and 2 deletions

View File

@ -16,6 +16,7 @@ COPY ./skrypt_download.py ./
COPY ./skrypt_stat.py ./ COPY ./skrypt_stat.py ./
COPY ./IUM_05.py ./ COPY ./IUM_05.py ./
COPY ./training.py ./ COPY ./training.py ./
COPY ./mongoObserver.py ./
RUN mkdir /.kaggle RUN mkdir /.kaggle
RUN chmod -R 777 /.kaggle RUN chmod -R 777 /.kaggle

View File

@ -24,6 +24,7 @@ pipeline {
steps{ steps{
copyArtifacts fingerprintArtifacts: true, projectName: 's434732-training/master', selector: buildParameter('WHICH_BUILD_TRAIN') copyArtifacts fingerprintArtifacts: true, projectName: 's434732-training/master', selector: buildParameter('WHICH_BUILD_TRAIN')
sh 'python3 "./evaluation.py" >> result.txt' sh 'python3 "./evaluation.py" >> result.txt'
sh 'python3 "./mongoObserver.py"'
} }
} }
stage('archiveArtifacts') { stage('archiveArtifacts') {

85
mongoObserver.py Normal file
View File

@ -0,0 +1,85 @@
import torch
from torch import nn
import numpy as np
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from sacred import Experiment
from sacred.observers import MongoObserver
np.set_printoptions(suppress=False)
ex = Experiment("434732-mongo", interactive=False, save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017', db_name='sacred'))
@ex.config
def my_config():
epochs = 5
batch_size = 10
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
@ex.capture
def readAndtrain(epchos, batch_size, _run):
train = pd.read_csv("train.csv")
test = pd.read_csv("test.csv")
xtrain = train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytrain = train['DEATH_EVENT'].astype(np.float32)
xtest = test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
ytest = test['DEATH_EVENT'].astype(np.float32)
xTrain = torch.from_numpy(xtrain.values)
yTrain = torch.from_numpy(ytrain.values.reshape(179,1))
xTest = torch.from_numpy(xtest.values)
yTest = torch.from_numpy(ytest.values)
learning_rate = 0.002
input_dim = 11
output_dim = 1
_run.info("Batch: " + str(batch_size) + " epoch: " + epchos)
model = LogisticRegressionModel(input_dim, output_dim)
model.load_state_dict(torch.load('DEATH_EVENT.pth'))
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(epchos):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(xTrain)
# Compute Loss
loss = criterion(y_pred, yTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
_run.info("Lost", str(loss.item()))
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
prediction= model(xTest)
_run.info("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
_run.info("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
print("accuracy_score", accuracy_score(yTest, np.argmax(prediction.detach().numpy(), axis=1)))
print("F1", f1_score(yTest, np.argmax(prediction.detach().numpy(), axis=1), average=None))
@ex.automain
def my_main(epochs, batch_size):
readAndtrain()
ex.run()
ex.add_artifact('DEATH_EVENT.pth')

View File

@ -55,7 +55,7 @@ for epoch in range(num_epochs):
# Backward pass # Backward pass
loss.backward() loss.backward()
optimizer.step() optimizer.step()
y_pred = model(xTest) predictions = model(xTest)
print(y_pred.data) print(predictions.data)
torch.save(model.state_dict(), 'DEATH_EVENT.pth') torch.save(model.state_dict(), 'DEATH_EVENT.pth')