new dataset

This commit is contained in:
s434732 2021-05-15 15:24:37 +02:00
parent fdc0c9e482
commit d2d986c556
10 changed files with 903 additions and 42233 deletions

BIN
DEATH_EVENT.pth Normal file

Binary file not shown.

181
IUM_05.py
View File

@ -1,154 +1,61 @@
from sklearn.model_selection import train_test_split
import torch import torch
import torch.nn as nn import sys
from torch import nn
import numpy as np
import pandas as pd import pandas as pd
import torch.nn.functional as F np.set_printoptions(suppress=False)
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
# results = pd.read_csv('results.csv')
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
#brak wierszy z NaN
# results.dropna()
#
# #normalizacja itp
# for collumn in ['home_team', 'away_team', 'tournament', 'city', 'country']:
# results[collumn] = results[collumn].str.lower()
#
categorical_cols = train.select_dtypes(include=object).columns.values
#
#
# train, test = train_test_split(results, test_size= 1 - 0.4)
#
# #valid, test = train_test_split(test, test_size=0.5)
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
def dataframe_to_arrays(dataframe): class LogisticRegressionModel(nn.Module):
# Make a copy of the original dataframe def __init__(self, input_dim, output_dim):
dataframe1 = dataframe.copy(deep=True) super(LogisticRegressionModel, self).__init__()
# Convert non-numeric categorical columns to numbers self.linear = nn.Linear(input_dim, output_dim)
for col in categorical_cols: self.sigmoid = nn.Sigmoid()
dataframe1[col] = dataframe1[col].astype('category').cat.codes def forward(self, x):
# Extract input & outupts as numpy arrays out = self.linear(x)
return self.sigmoid(out)
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test) data_train = pd.read_csv("train.csv")
data_test = pd.read_csv("test.csv")
data_val = pd.read_csv("valid.csv")
x_train = data_train[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
y_train = data_train['DEATH_EVENT'].astype(np.float32)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32) x_test = data_test[['age','anaemia','creatinine_phosphokinase','diabetes', 'ejection_fraction', 'high_blood_pressure', 'platelets', 'serum_creatinine', 'serum_sodium', 'sex', 'smoking']].astype(np.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32) y_test = data_test['DEATH_EVENT'].astype(np.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32) fTrain = torch.from_numpy(x_train.values)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32) tTrain = torch.from_numpy(y_train.values.reshape(179,1))
train_dataset = TensorDataset(inputs_training, targets_training) fTest= torch.from_numpy(x_test.values)
val_dataset = TensorDataset(inputs_testing, targets_testing) tTest = torch.from_numpy(y_test.values)
batch_size = 64 batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 10
train_loader = DataLoader(train_dataset, batch_size, shuffle=True) num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
val_loader = DataLoader(val_dataset, batch_size*2) learning_rate = 0.001
input_dim = 11
output_dim = 1
input_size = len(input_cols) model = LogisticRegressionModel(input_dim, output_dim)
output_size = len(output_cols)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
class FootbalModel(nn.Module): # print ("Epoch #",epoch)
def __init__(self): model.train()
super().__init__() optimizer.zero_grad()
self.linear = nn.Linear(input_size, output_size) # Forward pass
y_pred = model(fTrain)
def forward(self, xb): # Compute Loss
out = self.linear(xb) loss = criterion(y_pred, tTrain)
return out # print(loss.item())
# Backward pass
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calculate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
# Print result every 20th epoch
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
model = FootbalModel()
list(model.parameters())
def evaluate(model, val_loader):
outputs = [model.validation_step(batch) for batch in val_loader]
return model.validation_epoch_end(outputs)
def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
history = []
optimizer = opt_func(model.parameters(), lr)
for epoch in range(epochs):
# Training Phase
for batch in train_loader:
loss = model.training_step(batch)
loss.backward() loss.backward()
optimizer.step() optimizer.step()
optimizer.zero_grad() y_pred = model(fTest)
# Validation phase print(y_pred.data)
result = evaluate(model, val_loader)
model.epoch_end(epoch, result, epochs)
history.append(result)
return history
torch.save(model.state_dict(), 'DEATH_EVENT.pth')
result = evaluate(model, val_loader) # Use the the evaluate function
epochs = 100
lr = 1e-6
history3 = fit(epochs, lr, model, train_loader, val_loader)
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(input) # fill this
prediction = predictions[0].detach()
print("Prediction:", prediction)
if prediction >= 0.5:
print('Neutral')
else:
print('not neutral')
for i in range(len(val_dataset)):
input, target = val_dataset[i]
predict_single(input, target, model)
torch.save(model.state_dict(), 'FootballModel.pth')

0
Jenkinsfile_evaluation Normal file
View File

153
evaluation.py Normal file
View File

@ -0,0 +1,153 @@
import sys
import torch
import torch.nn as nn
import pandas as pd
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
batch_size = 64
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
categorical_cols = train.select_dtypes(include=object).columns.values
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
dataframe1 = dataframe.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
dataframe1[col] = dataframe1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
train_dataset = TensorDataset(inputs_training, targets_training)
val_dataset = TensorDataset(inputs_testing, targets_testing)
train_loader = DataLoader(train_dataset, batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size*2)
input_size = len(input_cols)
output_size = len(output_cols)
class FootbalModel(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(input_size, output_size)
def forward(self, xb):
out = self.linear(xb)
return out
def training_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calcuate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return loss
def validation_step(self, batch):
inputs, targets = batch
# Generate predictions
out = self(inputs)
# Calculate loss
# loss = F.l1_loss(out, targets)
loss = F.mse_loss(out, targets)
return {'val_loss': loss.detach()}
def validation_epoch_end(self, outputs):
batch_losses = [x['val_loss'] for x in outputs]
epoch_loss = torch.stack(batch_losses).mean()
return {'val_loss': epoch_loss.item()}
def epoch_end(self, epoch, result, num_epochs):
# Print result every 20th epoch
if (epoch + 1) % 20 == 0 or epoch == num_epochs - 1:
print("Epoch [{}], val_loss: {:.4f}".format(epoch + 1, result['val_loss']))
model = FootbalModel()
model.load_state_dict(torch.load('FootballModel.pth'))
list(model.parameters())
# def evaluate(model, val_loader):
# outputs = [model.validation_step(batch) for batch in val_loader]
# return model.validation_epoch_end(outputs)
#
# def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD):
# history = []
# optimizer = opt_func(model.parameters(), lr)
# for epoch in range(epochs):
# # Training Phase
# for batch in train_loader:
# loss = model.training_step(batch)
# loss.backward()
# optimizer.step()
# optimizer.zero_grad()
# # Validation phase
# result = evaluate(model, val_loader)
# model.epoch_end(epoch, result, epochs)
# history.append(result)
# return history
#
#
# result = evaluate(model, val_loader) # Use the the evaluate function
#
# # epochs = 100
# lr = 1e-6
# history3 = fit(epochs, lr, model, train_loader, val_loader)
#
def predict_single(input, target, model):
inputs = input.unsqueeze(0)
predictions = model(input)
print(type(predictions))# fill this
prediction = predictions[0].detach()
print(prediction)
print("Prediction:", prediction)
if prediction >= 0.5:
print('Neutral')
else:
print('not neutral')
# inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
# targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
# inputs = input.unsqueeze(0)
# predictions = model(targets_testing)
for i in range(len(val_dataset)):
input, target = val_dataset[i]
predict_single(input, target, model)
# torch.save(model.state_dict(), 'FootballModel.pth')

View File

@ -0,0 +1,300 @@
age,anaemia,creatinine_phosphokinase,diabetes,ejection_fraction,high_blood_pressure,platelets,serum_creatinine,serum_sodium,sex,smoking,time,DEATH_EVENT
75,0,582,0,20,1,265000,1.9,130,1,0,4,1
55,0,7861,0,38,0,263358.03,1.1,136,1,0,6,1
65,0,146,0,20,0,162000,1.3,129,1,1,7,1
50,1,111,0,20,0,210000,1.9,137,1,0,7,1
65,1,160,1,20,0,327000,2.7,116,0,0,8,1
90,1,47,0,40,1,204000,2.1,132,1,1,8,1
75,1,246,0,15,0,127000,1.2,137,1,0,10,1
60,1,315,1,60,0,454000,1.1,131,1,1,10,1
65,0,157,0,65,0,263358.03,1.5,138,0,0,10,1
80,1,123,0,35,1,388000,9.4,133,1,1,10,1
75,1,81,0,38,1,368000,4,131,1,1,10,1
62,0,231,0,25,1,253000,0.9,140,1,1,10,1
45,1,981,0,30,0,136000,1.1,137,1,0,11,1
50,1,168,0,38,1,276000,1.1,137,1,0,11,1
49,1,80,0,30,1,427000,1,138,0,0,12,0
82,1,379,0,50,0,47000,1.3,136,1,0,13,1
87,1,149,0,38,0,262000,0.9,140,1,0,14,1
45,0,582,0,14,0,166000,0.8,127,1,0,14,1
70,1,125,0,25,1,237000,1,140,0,0,15,1
48,1,582,1,55,0,87000,1.9,121,0,0,15,1
65,1,52,0,25,1,276000,1.3,137,0,0,16,0
65,1,128,1,30,1,297000,1.6,136,0,0,20,1
68,1,220,0,35,1,289000,0.9,140,1,1,20,1
53,0,63,1,60,0,368000,0.8,135,1,0,22,0
75,0,582,1,30,1,263358.03,1.83,134,0,0,23,1
80,0,148,1,38,0,149000,1.9,144,1,1,23,1
95,1,112,0,40,1,196000,1,138,0,0,24,1
70,0,122,1,45,1,284000,1.3,136,1,1,26,1
58,1,60,0,38,0,153000,5.8,134,1,0,26,1
82,0,70,1,30,0,200000,1.2,132,1,1,26,1
94,0,582,1,38,1,263358.03,1.83,134,1,0,27,1
85,0,23,0,45,0,360000,3,132,1,0,28,1
50,1,249,1,35,1,319000,1,128,0,0,28,1
50,1,159,1,30,0,302000,1.2,138,0,0,29,0
65,0,94,1,50,1,188000,1,140,1,0,29,1
69,0,582,1,35,0,228000,3.5,134,1,0,30,1
90,1,60,1,50,0,226000,1,134,1,0,30,1
82,1,855,1,50,1,321000,1,145,0,0,30,1
60,0,2656,1,30,0,305000,2.3,137,1,0,30,0
60,0,235,1,38,0,329000,3,142,0,0,30,1
70,0,582,0,20,1,263358.03,1.83,134,1,1,31,1
50,0,124,1,30,1,153000,1.2,136,0,1,32,1
70,0,571,1,45,1,185000,1.2,139,1,1,33,1
72,0,127,1,50,1,218000,1,134,1,0,33,0
60,1,588,1,60,0,194000,1.1,142,0,0,33,1
50,0,582,1,38,0,310000,1.9,135,1,1,35,1
51,0,1380,0,25,1,271000,0.9,130,1,0,38,1
60,0,582,1,38,1,451000,0.6,138,1,1,40,1
80,1,553,0,20,1,140000,4.4,133,1,0,41,1
57,1,129,0,30,0,395000,1,140,0,0,42,1
68,1,577,0,25,1,166000,1,138,1,0,43,1
53,1,91,0,20,1,418000,1.4,139,0,0,43,1
60,0,3964,1,62,0,263358.03,6.8,146,0,0,43,1
70,1,69,1,50,1,351000,1,134,0,0,44,1
60,1,260,1,38,0,255000,2.2,132,0,1,45,1
95,1,371,0,30,0,461000,2,132,1,0,50,1
70,1,75,0,35,0,223000,2.7,138,1,1,54,0
60,1,607,0,40,0,216000,0.6,138,1,1,54,0
49,0,789,0,20,1,319000,1.1,136,1,1,55,1
72,0,364,1,20,1,254000,1.3,136,1,1,59,1
45,0,7702,1,25,1,390000,1,139,1,0,60,1
50,0,318,0,40,1,216000,2.3,131,0,0,60,1
55,0,109,0,35,0,254000,1.1,139,1,1,60,0
45,0,582,0,35,0,385000,1,145,1,0,61,1
45,0,582,0,80,0,263358.03,1.18,137,0,0,63,0
60,0,68,0,20,0,119000,2.9,127,1,1,64,1
42,1,250,1,15,0,213000,1.3,136,0,0,65,1
72,1,110,0,25,0,274000,1,140,1,1,65,1
70,0,161,0,25,0,244000,1.2,142,0,0,66,1
65,0,113,1,25,0,497000,1.83,135,1,0,67,1
41,0,148,0,40,0,374000,0.8,140,1,1,68,0
58,0,582,1,35,0,122000,0.9,139,1,1,71,0
85,0,5882,0,35,0,243000,1,132,1,1,72,1
65,0,224,1,50,0,149000,1.3,137,1,1,72,0
69,0,582,0,20,0,266000,1.2,134,1,1,73,1
60,1,47,0,20,0,204000,0.7,139,1,1,73,1
70,0,92,0,60,1,317000,0.8,140,0,1,74,0
42,0,102,1,40,0,237000,1.2,140,1,0,74,0
75,1,203,1,38,1,283000,0.6,131,1,1,74,0
55,0,336,0,45,1,324000,0.9,140,0,0,74,0
70,0,69,0,40,0,293000,1.7,136,0,0,75,0
67,0,582,0,50,0,263358.03,1.18,137,1,1,76,0
60,1,76,1,25,0,196000,2.5,132,0,0,77,1
79,1,55,0,50,1,172000,1.8,133,1,0,78,0
59,1,280,1,25,1,302000,1,141,0,0,78,1
51,0,78,0,50,0,406000,0.7,140,1,0,79,0
55,0,47,0,35,1,173000,1.1,137,1,0,79,0
65,1,68,1,60,1,304000,0.8,140,1,0,79,0
44,0,84,1,40,1,235000,0.7,139,1,0,79,0
57,1,115,0,25,1,181000,1.1,144,1,0,79,0
70,0,66,1,45,0,249000,0.8,136,1,1,80,0
60,0,897,1,45,0,297000,1,133,1,0,80,0
42,0,582,0,60,0,263358.03,1.18,137,0,0,82,0
60,1,154,0,25,0,210000,1.7,135,1,0,82,1
58,0,144,1,38,1,327000,0.7,142,0,0,83,0
58,1,133,0,60,1,219000,1,141,1,0,83,0
63,1,514,1,25,1,254000,1.3,134,1,0,83,0
70,1,59,0,60,0,255000,1.1,136,0,0,85,0
60,1,156,1,25,1,318000,1.2,137,0,0,85,0
63,1,61,1,40,0,221000,1.1,140,0,0,86,0
65,1,305,0,25,0,298000,1.1,141,1,0,87,0
75,0,582,0,45,1,263358.03,1.18,137,1,0,87,0
80,0,898,0,25,0,149000,1.1,144,1,1,87,0
42,0,5209,0,30,0,226000,1,140,1,1,87,0
60,0,53,0,50,1,286000,2.3,143,0,0,87,0
72,1,328,0,30,1,621000,1.7,138,0,1,88,1
55,0,748,0,45,0,263000,1.3,137,1,0,88,0
45,1,1876,1,35,0,226000,0.9,138,1,0,88,0
63,0,936,0,38,0,304000,1.1,133,1,1,88,0
45,0,292,1,35,0,850000,1.3,142,1,1,88,0
85,0,129,0,60,0,306000,1.2,132,1,1,90,1
55,0,60,0,35,0,228000,1.2,135,1,1,90,0
50,0,369,1,25,0,252000,1.6,136,1,0,90,0
70,1,143,0,60,0,351000,1.3,137,0,0,90,1
60,1,754,1,40,1,328000,1.2,126,1,0,91,0
58,1,400,0,40,0,164000,1,139,0,0,91,0
60,1,96,1,60,1,271000,0.7,136,0,0,94,0
85,1,102,0,60,0,507000,3.2,138,0,0,94,0
65,1,113,1,60,1,203000,0.9,140,0,0,94,0
86,0,582,0,38,0,263358.03,1.83,134,0,0,95,1
60,1,737,0,60,1,210000,1.5,135,1,1,95,0
66,1,68,1,38,1,162000,1,136,0,0,95,0
60,0,96,1,38,0,228000,0.75,140,0,0,95,0
60,1,582,0,30,1,127000,0.9,145,0,0,95,0
60,0,582,0,40,0,217000,3.7,134,1,0,96,1
43,1,358,0,50,0,237000,1.3,135,0,0,97,0
46,0,168,1,17,1,271000,2.1,124,0,0,100,1
58,1,200,1,60,0,300000,0.8,137,0,0,104,0
61,0,248,0,30,1,267000,0.7,136,1,1,104,0
53,1,270,1,35,0,227000,3.4,145,1,0,105,0
53,1,1808,0,60,1,249000,0.7,138,1,1,106,0
60,1,1082,1,45,0,250000,6.1,131,1,0,107,0
46,0,719,0,40,1,263358.03,1.18,137,0,0,107,0
63,0,193,0,60,1,295000,1.3,145,1,1,107,0
81,0,4540,0,35,0,231000,1.18,137,1,1,107,0
75,0,582,0,40,0,263358.03,1.18,137,1,0,107,0
65,1,59,1,60,0,172000,0.9,137,0,0,107,0
68,1,646,0,25,0,305000,2.1,130,1,0,108,0
62,0,281,1,35,0,221000,1,136,0,0,108,0
50,0,1548,0,30,1,211000,0.8,138,1,0,108,0
80,0,805,0,38,0,263358.03,1.1,134,1,0,109,1
46,1,291,0,35,0,348000,0.9,140,0,0,109,0
50,0,482,1,30,0,329000,0.9,132,0,0,109,0
61,1,84,0,40,1,229000,0.9,141,0,0,110,0
72,1,943,0,25,1,338000,1.7,139,1,1,111,1
50,0,185,0,30,0,266000,0.7,141,1,1,112,0
52,0,132,0,30,0,218000,0.7,136,1,1,112,0
64,0,1610,0,60,0,242000,1,137,1,0,113,0
75,1,582,0,30,0,225000,1.83,134,1,0,113,1
60,0,2261,0,35,1,228000,0.9,136,1,0,115,0
72,0,233,0,45,1,235000,2.5,135,0,0,115,1
62,0,30,1,60,1,244000,0.9,139,1,0,117,0
50,0,115,0,45,1,184000,0.9,134,1,1,118,0
50,0,1846,1,35,0,263358.03,1.18,137,1,1,119,0
65,1,335,0,35,1,235000,0.8,136,0,0,120,0
60,1,231,1,25,0,194000,1.7,140,1,0,120,0
52,1,58,0,35,0,277000,1.4,136,0,0,120,0
50,0,250,0,25,0,262000,1,136,1,1,120,0
85,1,910,0,50,0,235000,1.3,134,1,0,121,0
59,1,129,0,45,1,362000,1.1,139,1,1,121,0
66,1,72,0,40,1,242000,1.2,134,1,0,121,0
45,1,130,0,35,0,174000,0.8,139,1,1,121,0
63,1,582,0,40,0,448000,0.9,137,1,1,123,0
50,1,2334,1,35,0,75000,0.9,142,0,0,126,1
45,0,2442,1,30,0,334000,1.1,139,1,0,129,1
80,0,776,1,38,1,192000,1.3,135,0,0,130,1
53,0,196,0,60,0,220000,0.7,133,1,1,134,0
59,0,66,1,20,0,70000,2.4,134,1,0,135,1
65,0,582,1,40,0,270000,1,138,0,0,140,0
70,0,835,0,35,1,305000,0.8,133,0,0,145,0
51,1,582,1,35,0,263358.03,1.5,136,1,1,145,0
52,0,3966,0,40,0,325000,0.9,140,1,1,146,0
70,1,171,0,60,1,176000,1.1,145,1,1,146,0
50,1,115,0,20,0,189000,0.8,139,1,0,146,0
65,0,198,1,35,1,281000,0.9,137,1,1,146,0
60,1,95,0,60,0,337000,1,138,1,1,146,0
69,0,1419,0,40,0,105000,1,135,1,1,147,0
49,1,69,0,50,0,132000,1,140,0,0,147,0
63,1,122,1,60,0,267000,1.2,145,1,0,147,0
55,0,835,0,40,0,279000,0.7,140,1,1,147,0
40,0,478,1,30,0,303000,0.9,136,1,0,148,0
59,1,176,1,25,0,221000,1,136,1,1,150,1
65,0,395,1,25,0,265000,1.2,136,1,1,154,1
75,0,99,0,38,1,224000,2.5,134,1,0,162,1
58,1,145,0,25,0,219000,1.2,137,1,1,170,1
60.667,1,104,1,30,0,389000,1.5,136,1,0,171,1
50,0,582,0,50,0,153000,0.6,134,0,0,172,1
60,0,1896,1,25,0,365000,2.1,144,0,0,172,1
60.667,1,151,1,40,1,201000,1,136,0,0,172,0
40,0,244,0,45,1,275000,0.9,140,0,0,174,0
80,0,582,1,35,0,350000,2.1,134,1,0,174,0
64,1,62,0,60,0,309000,1.5,135,0,0,174,0
50,1,121,1,40,0,260000,0.7,130,1,0,175,0
73,1,231,1,30,0,160000,1.18,142,1,1,180,0
45,0,582,0,20,1,126000,1.6,135,1,0,180,1
77,1,418,0,45,0,223000,1.8,145,1,0,180,1
45,0,582,1,38,1,263358.03,1.18,137,0,0,185,0
65,0,167,0,30,0,259000,0.8,138,0,0,186,0
50,1,582,1,20,1,279000,1,134,0,0,186,0
60,0,1211,1,35,0,263358.03,1.8,113,1,1,186,0
63,1,1767,0,45,0,73000,0.7,137,1,0,186,0
45,0,308,1,60,1,377000,1,136,1,0,186,0
70,0,97,0,60,1,220000,0.9,138,1,0,186,0
60,0,59,0,25,1,212000,3.5,136,1,1,187,0
78,1,64,0,40,0,277000,0.7,137,1,1,187,0
50,1,167,1,45,0,362000,1,136,0,0,187,0
40,1,101,0,40,0,226000,0.8,141,0,0,187,0
85,0,212,0,38,0,186000,0.9,136,1,0,187,0
60,1,2281,1,40,0,283000,1,141,0,0,187,0
49,0,972,1,35,1,268000,0.8,130,0,0,187,0
70,0,212,1,17,1,389000,1,136,1,1,188,0
50,0,582,0,62,1,147000,0.8,140,1,1,192,0
78,0,224,0,50,0,481000,1.4,138,1,1,192,0
48,1,131,1,30,1,244000,1.6,130,0,0,193,1
65,1,135,0,35,1,290000,0.8,134,1,0,194,0
73,0,582,0,35,1,203000,1.3,134,1,0,195,0
70,0,1202,0,50,1,358000,0.9,141,0,0,196,0
54,1,427,0,70,1,151000,9,137,0,0,196,1
68,1,1021,1,35,0,271000,1.1,134,1,0,197,0
55,0,582,1,35,1,371000,0.7,140,0,0,197,0
73,0,582,0,20,0,263358.03,1.83,134,1,0,198,1
65,0,118,0,50,0,194000,1.1,145,1,1,200,0
42,1,86,0,35,0,365000,1.1,139,1,1,201,0
47,0,582,0,25,0,130000,0.8,134,1,0,201,0
58,0,582,1,25,0,504000,1,138,1,0,205,0
75,0,675,1,60,0,265000,1.4,125,0,0,205,0
58,1,57,0,25,0,189000,1.3,132,1,1,205,0
55,1,2794,0,35,1,141000,1,140,1,0,206,0
65,0,56,0,25,0,237000,5,130,0,0,207,0
72,0,211,0,25,0,274000,1.2,134,0,0,207,0
60,0,166,0,30,0,62000,1.7,127,0,0,207,1
70,0,93,0,35,0,185000,1.1,134,1,1,208,0
40,1,129,0,35,0,255000,0.9,137,1,0,209,0
53,1,707,0,38,0,330000,1.4,137,1,1,209,0
53,1,582,0,45,0,305000,1.1,137,1,1,209,0
77,1,109,0,50,1,406000,1.1,137,1,0,209,0
75,0,119,0,50,1,248000,1.1,148,1,0,209,0
70,0,232,0,30,0,173000,1.2,132,1,0,210,0
65,1,720,1,40,0,257000,1,136,0,0,210,0
55,1,180,0,45,0,263358.03,1.18,137,1,1,211,0
70,0,81,1,35,1,533000,1.3,139,0,0,212,0
65,0,582,1,30,0,249000,1.3,136,1,1,212,0
40,0,90,0,35,0,255000,1.1,136,1,1,212,0
73,1,1185,0,40,1,220000,0.9,141,0,0,213,0
54,0,582,1,38,0,264000,1.8,134,1,0,213,0
61,1,80,1,38,0,282000,1.4,137,1,0,213,0
55,0,2017,0,25,0,314000,1.1,138,1,0,214,1
64,0,143,0,25,0,246000,2.4,135,1,0,214,0
40,0,624,0,35,0,301000,1,142,1,1,214,0
53,0,207,1,40,0,223000,1.2,130,0,0,214,0
50,0,2522,0,30,1,404000,0.5,139,0,0,214,0
55,0,572,1,35,0,231000,0.8,143,0,0,215,0
50,0,245,0,45,1,274000,1,133,1,0,215,0
70,0,88,1,35,1,236000,1.2,132,0,0,215,0
53,1,446,0,60,1,263358.03,1,139,1,0,215,0
52,1,191,1,30,1,334000,1,142,1,1,216,0
65,0,326,0,38,0,294000,1.7,139,0,0,220,0
58,0,132,1,38,1,253000,1,139,1,0,230,0
45,1,66,1,25,0,233000,0.8,135,1,0,230,0
53,0,56,0,50,0,308000,0.7,135,1,1,231,0
55,0,66,0,40,0,203000,1,138,1,0,233,0
62,1,655,0,40,0,283000,0.7,133,0,0,233,0
65,1,258,1,25,0,198000,1.4,129,1,0,235,1
68,1,157,1,60,0,208000,1,140,0,0,237,0
61,0,582,1,38,0,147000,1.2,141,1,0,237,0
50,1,298,0,35,0,362000,0.9,140,1,1,240,0
55,0,1199,0,20,0,263358.03,1.83,134,1,1,241,1
56,1,135,1,38,0,133000,1.7,140,1,0,244,0
45,0,582,1,38,0,302000,0.9,140,0,0,244,0
40,0,582,1,35,0,222000,1,132,1,0,244,0
44,0,582,1,30,1,263358.03,1.6,130,1,1,244,0
51,0,582,1,40,0,221000,0.9,134,0,0,244,0
67,0,213,0,38,0,215000,1.2,133,0,0,245,0
42,0,64,0,40,0,189000,0.7,140,1,0,245,0
60,1,257,1,30,0,150000,1,137,1,1,245,0
45,0,582,0,38,1,422000,0.8,137,0,0,245,0
70,0,618,0,35,0,327000,1.1,142,0,0,245,0
70,0,582,1,38,0,25100,1.1,140,1,0,246,0
50,1,1051,1,30,0,232000,0.7,136,0,0,246,0
55,0,84,1,38,0,451000,1.3,136,0,0,246,0
70,0,2695,1,40,0,241000,1,137,1,0,247,0
70,0,582,0,40,0,51000,2.7,136,1,1,250,0
42,0,64,0,30,0,215000,3.8,128,1,1,250,0
65,0,1688,0,38,0,263358.03,1.1,138,1,1,250,0
50,1,54,0,40,0,279000,0.8,141,1,0,250,0
55,1,170,1,40,0,336000,1.2,135,1,0,250,0
60,0,253,0,35,0,279000,1.7,140,1,0,250,0
45,0,582,1,55,0,543000,1,132,0,0,250,0
65,0,892,1,35,0,263358.03,1.1,142,0,0,256,0
90,1,337,0,38,0,390000,0.9,144,0,0,256,0
45,0,615,1,55,0,222000,0.8,141,0,0,257,0
60,0,320,0,35,0,133000,1.4,139,1,0,258,0
52,0,190,1,38,0,382000,1,140,1,1,258,0
63,1,103,1,35,0,179000,0.9,136,1,1,270,0
62,0,61,1,38,1,155000,1.1,143,1,1,270,0
55,0,1820,0,38,0,270000,1.2,139,0,0,271,0
45,0,2060,1,60,0,742000,0.8,138,0,0,278,0
45,0,2413,0,38,0,140000,1.4,140,1,1,280,0
50,0,196,0,45,0,395000,1.6,136,1,1,285,0
1 age anaemia creatinine_phosphokinase diabetes ejection_fraction high_blood_pressure platelets serum_creatinine serum_sodium sex smoking time DEATH_EVENT
2 75 0 582 0 20 1 265000 1.9 130 1 0 4 1
3 55 0 7861 0 38 0 263358.03 1.1 136 1 0 6 1
4 65 0 146 0 20 0 162000 1.3 129 1 1 7 1
5 50 1 111 0 20 0 210000 1.9 137 1 0 7 1
6 65 1 160 1 20 0 327000 2.7 116 0 0 8 1
7 90 1 47 0 40 1 204000 2.1 132 1 1 8 1
8 75 1 246 0 15 0 127000 1.2 137 1 0 10 1
9 60 1 315 1 60 0 454000 1.1 131 1 1 10 1
10 65 0 157 0 65 0 263358.03 1.5 138 0 0 10 1
11 80 1 123 0 35 1 388000 9.4 133 1 1 10 1
12 75 1 81 0 38 1 368000 4 131 1 1 10 1
13 62 0 231 0 25 1 253000 0.9 140 1 1 10 1
14 45 1 981 0 30 0 136000 1.1 137 1 0 11 1
15 50 1 168 0 38 1 276000 1.1 137 1 0 11 1
16 49 1 80 0 30 1 427000 1 138 0 0 12 0
17 82 1 379 0 50 0 47000 1.3 136 1 0 13 1
18 87 1 149 0 38 0 262000 0.9 140 1 0 14 1
19 45 0 582 0 14 0 166000 0.8 127 1 0 14 1
20 70 1 125 0 25 1 237000 1 140 0 0 15 1
21 48 1 582 1 55 0 87000 1.9 121 0 0 15 1
22 65 1 52 0 25 1 276000 1.3 137 0 0 16 0
23 65 1 128 1 30 1 297000 1.6 136 0 0 20 1
24 68 1 220 0 35 1 289000 0.9 140 1 1 20 1
25 53 0 63 1 60 0 368000 0.8 135 1 0 22 0
26 75 0 582 1 30 1 263358.03 1.83 134 0 0 23 1
27 80 0 148 1 38 0 149000 1.9 144 1 1 23 1
28 95 1 112 0 40 1 196000 1 138 0 0 24 1
29 70 0 122 1 45 1 284000 1.3 136 1 1 26 1
30 58 1 60 0 38 0 153000 5.8 134 1 0 26 1
31 82 0 70 1 30 0 200000 1.2 132 1 1 26 1
32 94 0 582 1 38 1 263358.03 1.83 134 1 0 27 1
33 85 0 23 0 45 0 360000 3 132 1 0 28 1
34 50 1 249 1 35 1 319000 1 128 0 0 28 1
35 50 1 159 1 30 0 302000 1.2 138 0 0 29 0
36 65 0 94 1 50 1 188000 1 140 1 0 29 1
37 69 0 582 1 35 0 228000 3.5 134 1 0 30 1
38 90 1 60 1 50 0 226000 1 134 1 0 30 1
39 82 1 855 1 50 1 321000 1 145 0 0 30 1
40 60 0 2656 1 30 0 305000 2.3 137 1 0 30 0
41 60 0 235 1 38 0 329000 3 142 0 0 30 1
42 70 0 582 0 20 1 263358.03 1.83 134 1 1 31 1
43 50 0 124 1 30 1 153000 1.2 136 0 1 32 1
44 70 0 571 1 45 1 185000 1.2 139 1 1 33 1
45 72 0 127 1 50 1 218000 1 134 1 0 33 0
46 60 1 588 1 60 0 194000 1.1 142 0 0 33 1
47 50 0 582 1 38 0 310000 1.9 135 1 1 35 1
48 51 0 1380 0 25 1 271000 0.9 130 1 0 38 1
49 60 0 582 1 38 1 451000 0.6 138 1 1 40 1
50 80 1 553 0 20 1 140000 4.4 133 1 0 41 1
51 57 1 129 0 30 0 395000 1 140 0 0 42 1
52 68 1 577 0 25 1 166000 1 138 1 0 43 1
53 53 1 91 0 20 1 418000 1.4 139 0 0 43 1
54 60 0 3964 1 62 0 263358.03 6.8 146 0 0 43 1
55 70 1 69 1 50 1 351000 1 134 0 0 44 1
56 60 1 260 1 38 0 255000 2.2 132 0 1 45 1
57 95 1 371 0 30 0 461000 2 132 1 0 50 1
58 70 1 75 0 35 0 223000 2.7 138 1 1 54 0
59 60 1 607 0 40 0 216000 0.6 138 1 1 54 0
60 49 0 789 0 20 1 319000 1.1 136 1 1 55 1
61 72 0 364 1 20 1 254000 1.3 136 1 1 59 1
62 45 0 7702 1 25 1 390000 1 139 1 0 60 1
63 50 0 318 0 40 1 216000 2.3 131 0 0 60 1
64 55 0 109 0 35 0 254000 1.1 139 1 1 60 0
65 45 0 582 0 35 0 385000 1 145 1 0 61 1
66 45 0 582 0 80 0 263358.03 1.18 137 0 0 63 0
67 60 0 68 0 20 0 119000 2.9 127 1 1 64 1
68 42 1 250 1 15 0 213000 1.3 136 0 0 65 1
69 72 1 110 0 25 0 274000 1 140 1 1 65 1
70 70 0 161 0 25 0 244000 1.2 142 0 0 66 1
71 65 0 113 1 25 0 497000 1.83 135 1 0 67 1
72 41 0 148 0 40 0 374000 0.8 140 1 1 68 0
73 58 0 582 1 35 0 122000 0.9 139 1 1 71 0
74 85 0 5882 0 35 0 243000 1 132 1 1 72 1
75 65 0 224 1 50 0 149000 1.3 137 1 1 72 0
76 69 0 582 0 20 0 266000 1.2 134 1 1 73 1
77 60 1 47 0 20 0 204000 0.7 139 1 1 73 1
78 70 0 92 0 60 1 317000 0.8 140 0 1 74 0
79 42 0 102 1 40 0 237000 1.2 140 1 0 74 0
80 75 1 203 1 38 1 283000 0.6 131 1 1 74 0
81 55 0 336 0 45 1 324000 0.9 140 0 0 74 0
82 70 0 69 0 40 0 293000 1.7 136 0 0 75 0
83 67 0 582 0 50 0 263358.03 1.18 137 1 1 76 0
84 60 1 76 1 25 0 196000 2.5 132 0 0 77 1
85 79 1 55 0 50 1 172000 1.8 133 1 0 78 0
86 59 1 280 1 25 1 302000 1 141 0 0 78 1
87 51 0 78 0 50 0 406000 0.7 140 1 0 79 0
88 55 0 47 0 35 1 173000 1.1 137 1 0 79 0
89 65 1 68 1 60 1 304000 0.8 140 1 0 79 0
90 44 0 84 1 40 1 235000 0.7 139 1 0 79 0
91 57 1 115 0 25 1 181000 1.1 144 1 0 79 0
92 70 0 66 1 45 0 249000 0.8 136 1 1 80 0
93 60 0 897 1 45 0 297000 1 133 1 0 80 0
94 42 0 582 0 60 0 263358.03 1.18 137 0 0 82 0
95 60 1 154 0 25 0 210000 1.7 135 1 0 82 1
96 58 0 144 1 38 1 327000 0.7 142 0 0 83 0
97 58 1 133 0 60 1 219000 1 141 1 0 83 0
98 63 1 514 1 25 1 254000 1.3 134 1 0 83 0
99 70 1 59 0 60 0 255000 1.1 136 0 0 85 0
100 60 1 156 1 25 1 318000 1.2 137 0 0 85 0
101 63 1 61 1 40 0 221000 1.1 140 0 0 86 0
102 65 1 305 0 25 0 298000 1.1 141 1 0 87 0
103 75 0 582 0 45 1 263358.03 1.18 137 1 0 87 0
104 80 0 898 0 25 0 149000 1.1 144 1 1 87 0
105 42 0 5209 0 30 0 226000 1 140 1 1 87 0
106 60 0 53 0 50 1 286000 2.3 143 0 0 87 0
107 72 1 328 0 30 1 621000 1.7 138 0 1 88 1
108 55 0 748 0 45 0 263000 1.3 137 1 0 88 0
109 45 1 1876 1 35 0 226000 0.9 138 1 0 88 0
110 63 0 936 0 38 0 304000 1.1 133 1 1 88 0
111 45 0 292 1 35 0 850000 1.3 142 1 1 88 0
112 85 0 129 0 60 0 306000 1.2 132 1 1 90 1
113 55 0 60 0 35 0 228000 1.2 135 1 1 90 0
114 50 0 369 1 25 0 252000 1.6 136 1 0 90 0
115 70 1 143 0 60 0 351000 1.3 137 0 0 90 1
116 60 1 754 1 40 1 328000 1.2 126 1 0 91 0
117 58 1 400 0 40 0 164000 1 139 0 0 91 0
118 60 1 96 1 60 1 271000 0.7 136 0 0 94 0
119 85 1 102 0 60 0 507000 3.2 138 0 0 94 0
120 65 1 113 1 60 1 203000 0.9 140 0 0 94 0
121 86 0 582 0 38 0 263358.03 1.83 134 0 0 95 1
122 60 1 737 0 60 1 210000 1.5 135 1 1 95 0
123 66 1 68 1 38 1 162000 1 136 0 0 95 0
124 60 0 96 1 38 0 228000 0.75 140 0 0 95 0
125 60 1 582 0 30 1 127000 0.9 145 0 0 95 0
126 60 0 582 0 40 0 217000 3.7 134 1 0 96 1
127 43 1 358 0 50 0 237000 1.3 135 0 0 97 0
128 46 0 168 1 17 1 271000 2.1 124 0 0 100 1
129 58 1 200 1 60 0 300000 0.8 137 0 0 104 0
130 61 0 248 0 30 1 267000 0.7 136 1 1 104 0
131 53 1 270 1 35 0 227000 3.4 145 1 0 105 0
132 53 1 1808 0 60 1 249000 0.7 138 1 1 106 0
133 60 1 1082 1 45 0 250000 6.1 131 1 0 107 0
134 46 0 719 0 40 1 263358.03 1.18 137 0 0 107 0
135 63 0 193 0 60 1 295000 1.3 145 1 1 107 0
136 81 0 4540 0 35 0 231000 1.18 137 1 1 107 0
137 75 0 582 0 40 0 263358.03 1.18 137 1 0 107 0
138 65 1 59 1 60 0 172000 0.9 137 0 0 107 0
139 68 1 646 0 25 0 305000 2.1 130 1 0 108 0
140 62 0 281 1 35 0 221000 1 136 0 0 108 0
141 50 0 1548 0 30 1 211000 0.8 138 1 0 108 0
142 80 0 805 0 38 0 263358.03 1.1 134 1 0 109 1
143 46 1 291 0 35 0 348000 0.9 140 0 0 109 0
144 50 0 482 1 30 0 329000 0.9 132 0 0 109 0
145 61 1 84 0 40 1 229000 0.9 141 0 0 110 0
146 72 1 943 0 25 1 338000 1.7 139 1 1 111 1
147 50 0 185 0 30 0 266000 0.7 141 1 1 112 0
148 52 0 132 0 30 0 218000 0.7 136 1 1 112 0
149 64 0 1610 0 60 0 242000 1 137 1 0 113 0
150 75 1 582 0 30 0 225000 1.83 134 1 0 113 1
151 60 0 2261 0 35 1 228000 0.9 136 1 0 115 0
152 72 0 233 0 45 1 235000 2.5 135 0 0 115 1
153 62 0 30 1 60 1 244000 0.9 139 1 0 117 0
154 50 0 115 0 45 1 184000 0.9 134 1 1 118 0
155 50 0 1846 1 35 0 263358.03 1.18 137 1 1 119 0
156 65 1 335 0 35 1 235000 0.8 136 0 0 120 0
157 60 1 231 1 25 0 194000 1.7 140 1 0 120 0
158 52 1 58 0 35 0 277000 1.4 136 0 0 120 0
159 50 0 250 0 25 0 262000 1 136 1 1 120 0
160 85 1 910 0 50 0 235000 1.3 134 1 0 121 0
161 59 1 129 0 45 1 362000 1.1 139 1 1 121 0
162 66 1 72 0 40 1 242000 1.2 134 1 0 121 0
163 45 1 130 0 35 0 174000 0.8 139 1 1 121 0
164 63 1 582 0 40 0 448000 0.9 137 1 1 123 0
165 50 1 2334 1 35 0 75000 0.9 142 0 0 126 1
166 45 0 2442 1 30 0 334000 1.1 139 1 0 129 1
167 80 0 776 1 38 1 192000 1.3 135 0 0 130 1
168 53 0 196 0 60 0 220000 0.7 133 1 1 134 0
169 59 0 66 1 20 0 70000 2.4 134 1 0 135 1
170 65 0 582 1 40 0 270000 1 138 0 0 140 0
171 70 0 835 0 35 1 305000 0.8 133 0 0 145 0
172 51 1 582 1 35 0 263358.03 1.5 136 1 1 145 0
173 52 0 3966 0 40 0 325000 0.9 140 1 1 146 0
174 70 1 171 0 60 1 176000 1.1 145 1 1 146 0
175 50 1 115 0 20 0 189000 0.8 139 1 0 146 0
176 65 0 198 1 35 1 281000 0.9 137 1 1 146 0
177 60 1 95 0 60 0 337000 1 138 1 1 146 0
178 69 0 1419 0 40 0 105000 1 135 1 1 147 0
179 49 1 69 0 50 0 132000 1 140 0 0 147 0
180 63 1 122 1 60 0 267000 1.2 145 1 0 147 0
181 55 0 835 0 40 0 279000 0.7 140 1 1 147 0
182 40 0 478 1 30 0 303000 0.9 136 1 0 148 0
183 59 1 176 1 25 0 221000 1 136 1 1 150 1
184 65 0 395 1 25 0 265000 1.2 136 1 1 154 1
185 75 0 99 0 38 1 224000 2.5 134 1 0 162 1
186 58 1 145 0 25 0 219000 1.2 137 1 1 170 1
187 60.667 1 104 1 30 0 389000 1.5 136 1 0 171 1
188 50 0 582 0 50 0 153000 0.6 134 0 0 172 1
189 60 0 1896 1 25 0 365000 2.1 144 0 0 172 1
190 60.667 1 151 1 40 1 201000 1 136 0 0 172 0
191 40 0 244 0 45 1 275000 0.9 140 0 0 174 0
192 80 0 582 1 35 0 350000 2.1 134 1 0 174 0
193 64 1 62 0 60 0 309000 1.5 135 0 0 174 0
194 50 1 121 1 40 0 260000 0.7 130 1 0 175 0
195 73 1 231 1 30 0 160000 1.18 142 1 1 180 0
196 45 0 582 0 20 1 126000 1.6 135 1 0 180 1
197 77 1 418 0 45 0 223000 1.8 145 1 0 180 1
198 45 0 582 1 38 1 263358.03 1.18 137 0 0 185 0
199 65 0 167 0 30 0 259000 0.8 138 0 0 186 0
200 50 1 582 1 20 1 279000 1 134 0 0 186 0
201 60 0 1211 1 35 0 263358.03 1.8 113 1 1 186 0
202 63 1 1767 0 45 0 73000 0.7 137 1 0 186 0
203 45 0 308 1 60 1 377000 1 136 1 0 186 0
204 70 0 97 0 60 1 220000 0.9 138 1 0 186 0
205 60 0 59 0 25 1 212000 3.5 136 1 1 187 0
206 78 1 64 0 40 0 277000 0.7 137 1 1 187 0
207 50 1 167 1 45 0 362000 1 136 0 0 187 0
208 40 1 101 0 40 0 226000 0.8 141 0 0 187 0
209 85 0 212 0 38 0 186000 0.9 136 1 0 187 0
210 60 1 2281 1 40 0 283000 1 141 0 0 187 0
211 49 0 972 1 35 1 268000 0.8 130 0 0 187 0
212 70 0 212 1 17 1 389000 1 136 1 1 188 0
213 50 0 582 0 62 1 147000 0.8 140 1 1 192 0
214 78 0 224 0 50 0 481000 1.4 138 1 1 192 0
215 48 1 131 1 30 1 244000 1.6 130 0 0 193 1
216 65 1 135 0 35 1 290000 0.8 134 1 0 194 0
217 73 0 582 0 35 1 203000 1.3 134 1 0 195 0
218 70 0 1202 0 50 1 358000 0.9 141 0 0 196 0
219 54 1 427 0 70 1 151000 9 137 0 0 196 1
220 68 1 1021 1 35 0 271000 1.1 134 1 0 197 0
221 55 0 582 1 35 1 371000 0.7 140 0 0 197 0
222 73 0 582 0 20 0 263358.03 1.83 134 1 0 198 1
223 65 0 118 0 50 0 194000 1.1 145 1 1 200 0
224 42 1 86 0 35 0 365000 1.1 139 1 1 201 0
225 47 0 582 0 25 0 130000 0.8 134 1 0 201 0
226 58 0 582 1 25 0 504000 1 138 1 0 205 0
227 75 0 675 1 60 0 265000 1.4 125 0 0 205 0
228 58 1 57 0 25 0 189000 1.3 132 1 1 205 0
229 55 1 2794 0 35 1 141000 1 140 1 0 206 0
230 65 0 56 0 25 0 237000 5 130 0 0 207 0
231 72 0 211 0 25 0 274000 1.2 134 0 0 207 0
232 60 0 166 0 30 0 62000 1.7 127 0 0 207 1
233 70 0 93 0 35 0 185000 1.1 134 1 1 208 0
234 40 1 129 0 35 0 255000 0.9 137 1 0 209 0
235 53 1 707 0 38 0 330000 1.4 137 1 1 209 0
236 53 1 582 0 45 0 305000 1.1 137 1 1 209 0
237 77 1 109 0 50 1 406000 1.1 137 1 0 209 0
238 75 0 119 0 50 1 248000 1.1 148 1 0 209 0
239 70 0 232 0 30 0 173000 1.2 132 1 0 210 0
240 65 1 720 1 40 0 257000 1 136 0 0 210 0
241 55 1 180 0 45 0 263358.03 1.18 137 1 1 211 0
242 70 0 81 1 35 1 533000 1.3 139 0 0 212 0
243 65 0 582 1 30 0 249000 1.3 136 1 1 212 0
244 40 0 90 0 35 0 255000 1.1 136 1 1 212 0
245 73 1 1185 0 40 1 220000 0.9 141 0 0 213 0
246 54 0 582 1 38 0 264000 1.8 134 1 0 213 0
247 61 1 80 1 38 0 282000 1.4 137 1 0 213 0
248 55 0 2017 0 25 0 314000 1.1 138 1 0 214 1
249 64 0 143 0 25 0 246000 2.4 135 1 0 214 0
250 40 0 624 0 35 0 301000 1 142 1 1 214 0
251 53 0 207 1 40 0 223000 1.2 130 0 0 214 0
252 50 0 2522 0 30 1 404000 0.5 139 0 0 214 0
253 55 0 572 1 35 0 231000 0.8 143 0 0 215 0
254 50 0 245 0 45 1 274000 1 133 1 0 215 0
255 70 0 88 1 35 1 236000 1.2 132 0 0 215 0
256 53 1 446 0 60 1 263358.03 1 139 1 0 215 0
257 52 1 191 1 30 1 334000 1 142 1 1 216 0
258 65 0 326 0 38 0 294000 1.7 139 0 0 220 0
259 58 0 132 1 38 1 253000 1 139 1 0 230 0
260 45 1 66 1 25 0 233000 0.8 135 1 0 230 0
261 53 0 56 0 50 0 308000 0.7 135 1 1 231 0
262 55 0 66 0 40 0 203000 1 138 1 0 233 0
263 62 1 655 0 40 0 283000 0.7 133 0 0 233 0
264 65 1 258 1 25 0 198000 1.4 129 1 0 235 1
265 68 1 157 1 60 0 208000 1 140 0 0 237 0
266 61 0 582 1 38 0 147000 1.2 141 1 0 237 0
267 50 1 298 0 35 0 362000 0.9 140 1 1 240 0
268 55 0 1199 0 20 0 263358.03 1.83 134 1 1 241 1
269 56 1 135 1 38 0 133000 1.7 140 1 0 244 0
270 45 0 582 1 38 0 302000 0.9 140 0 0 244 0
271 40 0 582 1 35 0 222000 1 132 1 0 244 0
272 44 0 582 1 30 1 263358.03 1.6 130 1 1 244 0
273 51 0 582 1 40 0 221000 0.9 134 0 0 244 0
274 67 0 213 0 38 0 215000 1.2 133 0 0 245 0
275 42 0 64 0 40 0 189000 0.7 140 1 0 245 0
276 60 1 257 1 30 0 150000 1 137 1 1 245 0
277 45 0 582 0 38 1 422000 0.8 137 0 0 245 0
278 70 0 618 0 35 0 327000 1.1 142 0 0 245 0
279 70 0 582 1 38 0 25100 1.1 140 1 0 246 0
280 50 1 1051 1 30 0 232000 0.7 136 0 0 246 0
281 55 0 84 1 38 0 451000 1.3 136 0 0 246 0
282 70 0 2695 1 40 0 241000 1 137 1 0 247 0
283 70 0 582 0 40 0 51000 2.7 136 1 1 250 0
284 42 0 64 0 30 0 215000 3.8 128 1 1 250 0
285 65 0 1688 0 38 0 263358.03 1.1 138 1 1 250 0
286 50 1 54 0 40 0 279000 0.8 141 1 0 250 0
287 55 1 170 1 40 0 336000 1.2 135 1 0 250 0
288 60 0 253 0 35 0 279000 1.7 140 1 0 250 0
289 45 0 582 1 55 0 543000 1 132 0 0 250 0
290 65 0 892 1 35 0 263358.03 1.1 142 0 0 256 0
291 90 1 337 0 38 0 390000 0.9 144 0 0 256 0
292 45 0 615 1 55 0 222000 0.8 141 0 0 257 0
293 60 0 320 0 35 0 133000 1.4 139 1 0 258 0
294 52 0 190 1 38 0 382000 1 140 1 1 258 0
295 63 1 103 1 35 0 179000 0.9 136 1 1 270 0
296 62 0 61 1 38 1 155000 1.1 143 1 1 270 0
297 55 0 1820 0 38 0 270000 1.2 139 0 0 271 0
298 45 0 2060 1 60 0 742000 0.8 138 0 0 278 0
299 45 0 2413 0 38 0 140000 1.4 140 1 1 280 0
300 50 0 196 0 45 0 395000 1.6 136 1 1 285 0

88
newalgorytm.py Normal file
View File

@ -0,0 +1,88 @@
import sys
import torch
import torch.nn as nn
from sklearn import preprocessing
import numpy as np
import pandas as pd
np.set_printoptions(suppress=False)
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
train = pd.read_csv('train.csv')
test = pd.read_csv('test.csv')
categorical_cols = train.select_dtypes(include=object).columns.values
input_cols = train.columns.values[1:-1]
output_cols = train.columns.values[-1:]
def dataframe_to_arrays(dataframe):
# Make a copy of the original dataframe
dataframe1 = dataframe.copy(deep=True)
# Convert non-numeric categorical columns to numbers
for col in categorical_cols:
dataframe1[col] = dataframe1[col].astype('category').cat.codes
# Extract input & outupts as numpy arrays
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(dataframe1)
dataframe1 = pd.DataFrame(x_scaled, columns = dataframe1.columns)
inputs_array = dataframe1[input_cols].to_numpy()
targets_array = dataframe1[output_cols].to_numpy()
return inputs_array, targets_array
inputs_array_training, targets_array_training = dataframe_to_arrays(train)
inputs_array_testing, targets_array_testing = dataframe_to_arrays(test)
inputs_training = torch.from_numpy(inputs_array_training).type(torch.float32)
targets_training = torch.from_numpy(targets_array_training).type(torch.float32)
inputs_testing = torch.from_numpy(inputs_array_testing).type(torch.float32)
targets_testing = torch.from_numpy(targets_array_testing).type(torch.float32)
fTrain = inputs_training.values
tTrain = targets_training.values
fTest= inputs_testing.values
tTest = targets_testing.values
batch_size = 16
num_epochs = 5
learning_rate = 0.001
input_dim = 6
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest, return_dict=False)
print("predicted Y value: ", y_pred.data)
torch.save(model.state_dict(), 'stroke.pth')

View File

@ -1,20 +1,27 @@
import pandas as pd import pandas as pd
from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split
from sklearn import preprocessing from sklearn.preprocessing import MinMaxScaler
import numpy as np
import kaggle import kaggle
kaggle.api.authenticate() kaggle.api.authenticate()
# kaggle.api.dataset_download_files('martj42/international-football-results-from-1872-to-2017', path='.', unzip=True) kaggle.api.dataset_download_files('andrewmvd/heart-failure-clinical-data', path='.', unzip=True)
results = pd.read_csv('results.csv') results = pd.read_csv('heart_failure_clinical_records_dataset.csv')
#brak wierszy z NaN #brak wierszy z NaN
results.dropna() results.dropna()
#normalizacja itp results = results.astype({"age": np.int64})
for collumn in ['home_team', 'away_team', 'tournament', 'city', 'country']:
results[collumn] = results[collumn].str.lower()
for col in results.columns:
if results[col].dtype == np.float64: # FLOATS TO VALUES IN [ 0, 1]
dataReshaped = results[col].values.reshape(-1, 1)
scaler = MinMaxScaler(feature_range=(0, 1))
results[col] = scaler.fit_transform(dataReshaped)
# Podział zbioru 6:1:1 # Podział zbioru 6:1:1
train, test = train_test_split(results, test_size= 1 - 0.6) train, test = train_test_split(results, test_size= 1 - 0.6)

8479
test.csv

File diff suppressed because it is too large Load Diff

25431
train.csv

File diff suppressed because it is too large Load Diff

8479
valid.csv

File diff suppressed because it is too large Load Diff