2021-05-15 14:18:38 +02:00
|
|
|
import sys
|
|
|
|
from keras.backend import batch_dot, mean
|
2021-05-23 14:31:27 +02:00
|
|
|
from mlflow.models.signature import infer_signature
|
2021-05-15 14:18:38 +02:00
|
|
|
import pandas as pd
|
|
|
|
import numpy as np
|
|
|
|
from six import int2byte
|
|
|
|
from sklearn import preprocessing
|
|
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
import tensorflow as tf
|
|
|
|
from tensorflow import keras
|
|
|
|
from tensorflow.keras.layers import Input, Dense, Activation,Dropout
|
|
|
|
from tensorflow.keras.models import Model
|
|
|
|
from tensorflow.keras.callbacks import EarlyStopping
|
|
|
|
from keras.models import Sequential
|
|
|
|
import mlflow
|
2021-05-23 23:01:50 +02:00
|
|
|
from mlflow.tracking import MlflowClient
|
2021-05-15 14:18:38 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def my_main(epochs, batch_size):
|
|
|
|
|
|
|
|
# odczytanie danych z plików
|
|
|
|
avocado_train = pd.read_csv('avocado_train.csv')
|
|
|
|
avocado_test = pd.read_csv('avocado_test.csv')
|
|
|
|
avocado_validate = pd.read_csv('avocado_validate.csv')
|
|
|
|
|
|
|
|
|
|
|
|
# podzial na X i y
|
|
|
|
X_train = avocado_train[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
|
|
|
y_train = avocado_train[['type']]
|
|
|
|
X_test = avocado_test[['average_price', 'total_volume', '4046', '4225', '4770', 'total_bags', 'small_bags', 'large_bags', 'xlarge_bags']]
|
|
|
|
y_test = avocado_test[['type']]
|
|
|
|
|
|
|
|
print(X_train.shape[1])
|
|
|
|
# keras model
|
|
|
|
model = Sequential()
|
|
|
|
model.add(Dense(9, input_dim = X_train.shape[1], kernel_initializer='normal', activation='relu'))
|
|
|
|
model.add(Dense(1,kernel_initializer='normal', activation='sigmoid'))
|
|
|
|
|
|
|
|
early_stop = EarlyStopping(monitor="val_loss", mode="min", verbose=1, patience=10)
|
|
|
|
|
|
|
|
# kompilacja
|
|
|
|
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
|
|
|
|
|
|
|
|
# trenowanie modelu
|
|
|
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_test, y_test))
|
|
|
|
|
|
|
|
# predykcja
|
|
|
|
prediction = model.predict(X_test)
|
|
|
|
|
|
|
|
# ewaluacja
|
|
|
|
rmse = mean_squared_error(y_test, prediction)
|
|
|
|
|
|
|
|
# zapisanie modelu
|
|
|
|
model.save('avocado_model.h5')
|
|
|
|
|
2021-05-23 14:31:27 +02:00
|
|
|
|
|
|
|
return rmse, model, X_train, y_train
|
2021-05-15 14:18:38 +02:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
epochs = int(sys.argv[1]) if len(sys.argv) > 1 else 15
|
|
|
|
batch_size = int(sys.argv[2]) if len(sys.argv) > 2 else 16
|
|
|
|
|
2021-05-23 23:01:50 +02:00
|
|
|
mlflow.set_tracking_uri("http://172.17.0.1:5000")
|
|
|
|
mlflow.set_experiment("s434742")
|
|
|
|
client = MlflowClient()
|
|
|
|
|
|
|
|
|
2021-05-15 14:18:38 +02:00
|
|
|
|
|
|
|
with mlflow.start_run():
|
|
|
|
|
2021-05-23 14:31:27 +02:00
|
|
|
rmse, model, X_train, y_train = my_main(epochs, batch_size)
|
2021-05-15 14:18:38 +02:00
|
|
|
|
|
|
|
mlflow.log_param("epochs", epochs)
|
|
|
|
mlflow.log_param("batch_size", batch_size)
|
|
|
|
mlflow.log_metric("rmse", rmse)
|
2021-05-23 14:31:27 +02:00
|
|
|
#mlflow.keras.log_model(model, 'avocado_model.h5')
|
2021-05-23 23:01:50 +02:00
|
|
|
mlflow.keras.log_model(keras_model=model, path='avocado_model', registered_model_name="s434742", signature=infer_signature(X_train, y_train), input_example=X_train.iloc[0])
|
|
|
|
mlflow.keras.save_model(keras_model=model, path='avocado_model', signature=infer_signature(X_train, y_train), input_example=X_train.iloc[0])
|
|
|
|
|