challenging-america-word-ga.../run.py

81 lines
3.2 KiB
Python
Raw Normal View History

2022-04-12 10:01:45 +02:00
#%%
import pandas as pd
from collections import defaultdict, Counter
from sqlalchemy import true
from nltk import trigrams, word_tokenize, bigrams
import csv
#%%
class Model:
def __init__(self):
self.model = defaultdict(lambda: defaultdict(lambda: 0))
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
2022-04-12 10:43:14 +02:00
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=30000)[[6, 7]]
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE, nrows=30000)
2022-04-12 10:01:45 +02:00
data = pd.concat([train_in, train_expected], axis=1)
self.data = data[6] + data[0] + data[7]
self.data = self.data.apply(self.clean)
def clean(self, text):
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
return text
def train(self):
2022-04-12 10:43:14 +02:00
alpha = 0.4
2022-04-12 10:01:45 +02:00
vocab = set()
for text in model.data:
words = word_tokenize(text)
2022-04-12 10:30:37 +02:00
for w1, w2, w3 in trigrams(words):
2022-04-12 10:01:45 +02:00
self.model[w1, w2][w3] += 1
vocab.add(w1)
vocab.add(w2)
vocab.add(w3)
2022-04-12 10:30:37 +02:00
for w1, w2 in bigrams(words):
2022-04-12 10:01:45 +02:00
self.model_bi[w1][w2] +=1
for w1, w2 in self.model:
total_count = float(sum(self.model[w1, w2].values()))
denominator = total_count * len(vocab)
for w in self.model[w1, w2]:
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
for w1 in self.model_bi:
total_count = float(sum(self.model_bi[w1].values()))
denominator = total_count * len(vocab)
for w in self.model_bi[w1]:
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
def predict(self, words):
trigrams = Counter(dict(self.model[words]))
bigrams = Counter(dict(self.model_bi[words[-1]]))
predictions = dict((trigrams + bigrams).most_common(6))
total_prob = 0
result = ""
for word, prob in predictions.items():
total_prob += prob
result += f"{word}:{prob} "
if len(result) == 0:
return "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
return result + f":{max(1-total_prob, 0.01)}"
model = Model()
#%%
model.data
model.train()
#%%
def predict(model, path, result_path):
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
with open(result_path, "w+", encoding="UTF-8") as f:
for text in data:
words = word_tokenize(model.clean(text))
if len(words) < 2:
prediction = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else:
prediction = model.predict((words[-2], words[-1]))
f.write(prediction + "\n")
predict(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
predict(model, "test-A/in.tsv.xz", "test-A/out.tsv")