81 lines
3.2 KiB
Python
81 lines
3.2 KiB
Python
|
#%%
|
|||
|
import pandas as pd
|
|||
|
from collections import defaultdict, Counter
|
|||
|
|
|||
|
from sqlalchemy import true
|
|||
|
from nltk import trigrams, word_tokenize, bigrams
|
|||
|
import csv
|
|||
|
|
|||
|
#%%
|
|||
|
class Model:
|
|||
|
def __init__(self):
|
|||
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
|||
|
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
|
|||
|
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[[6, 7]]
|
|||
|
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
|
|||
|
data = pd.concat([train_in, train_expected], axis=1)
|
|||
|
self.data = data[6] + data[0] + data[7]
|
|||
|
self.data = self.data.apply(self.clean)
|
|||
|
|
|||
|
def clean(self, text):
|
|||
|
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
|
|||
|
return text
|
|||
|
|
|||
|
def train(self):
|
|||
|
alpha = 0.7
|
|||
|
vocab = set()
|
|||
|
for text in model.data:
|
|||
|
words = word_tokenize(text)
|
|||
|
for w1, w2, w3 in trigrams(words, pad_left=True, pad_right=True):
|
|||
|
self.model[w1, w2][w3] += 1
|
|||
|
vocab.add(w1)
|
|||
|
vocab.add(w2)
|
|||
|
vocab.add(w3)
|
|||
|
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
|
|||
|
self.model_bi[w1][w2] +=1
|
|||
|
for w1, w2 in self.model:
|
|||
|
total_count = float(sum(self.model[w1, w2].values()))
|
|||
|
denominator = total_count * len(vocab)
|
|||
|
for w in self.model[w1, w2]:
|
|||
|
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
|
|||
|
for w1 in self.model_bi:
|
|||
|
total_count = float(sum(self.model_bi[w1].values()))
|
|||
|
denominator = total_count * len(vocab)
|
|||
|
for w in self.model_bi[w1]:
|
|||
|
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
|
|||
|
|
|||
|
def predict(self, words):
|
|||
|
trigrams = Counter(dict(self.model[words]))
|
|||
|
bigrams = Counter(dict(self.model_bi[words[-1]]))
|
|||
|
predictions = dict((trigrams + bigrams).most_common(6))
|
|||
|
total_prob = 0
|
|||
|
|
|||
|
result = ""
|
|||
|
for word, prob in predictions.items():
|
|||
|
total_prob += prob
|
|||
|
result += f"{word}:{prob} "
|
|||
|
|
|||
|
if len(result) == 0:
|
|||
|
return "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
|||
|
return result + f":{max(1-total_prob, 0.01)}"
|
|||
|
|
|||
|
model = Model()
|
|||
|
|
|||
|
#%%
|
|||
|
model.data
|
|||
|
model.train()
|
|||
|
|
|||
|
#%%
|
|||
|
def predict(model, path, result_path):
|
|||
|
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
|
|||
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
|||
|
for text in data:
|
|||
|
words = word_tokenize(model.clean(text))
|
|||
|
if len(words) < 2:
|
|||
|
prediction = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
|||
|
else:
|
|||
|
prediction = model.predict((words[-2], words[-1]))
|
|||
|
f.write(prediction + "\n")
|
|||
|
|
|||
|
predict(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
|
|||
|
predict(model, "test-A/in.tsv.xz", "test-A/out.tsv")
|