challenging-america-word-ga.../run.py
Anna Nowak ed3af7d037 test
2022-04-12 10:01:45 +02:00

81 lines
3.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#%%
import pandas as pd
from collections import defaultdict, Counter
from sqlalchemy import true
from nltk import trigrams, word_tokenize, bigrams
import csv
#%%
class Model:
def __init__(self):
self.model = defaultdict(lambda: defaultdict(lambda: 0))
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[[6, 7]]
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
data = pd.concat([train_in, train_expected], axis=1)
self.data = data[6] + data[0] + data[7]
self.data = self.data.apply(self.clean)
def clean(self, text):
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
return text
def train(self):
alpha = 0.7
vocab = set()
for text in model.data:
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_left=True, pad_right=True):
self.model[w1, w2][w3] += 1
vocab.add(w1)
vocab.add(w2)
vocab.add(w3)
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
self.model_bi[w1][w2] +=1
for w1, w2 in self.model:
total_count = float(sum(self.model[w1, w2].values()))
denominator = total_count * len(vocab)
for w in self.model[w1, w2]:
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
for w1 in self.model_bi:
total_count = float(sum(self.model_bi[w1].values()))
denominator = total_count * len(vocab)
for w in self.model_bi[w1]:
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
def predict(self, words):
trigrams = Counter(dict(self.model[words]))
bigrams = Counter(dict(self.model_bi[words[-1]]))
predictions = dict((trigrams + bigrams).most_common(6))
total_prob = 0
result = ""
for word, prob in predictions.items():
total_prob += prob
result += f"{word}:{prob} "
if len(result) == 0:
return "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
return result + f":{max(1-total_prob, 0.01)}"
model = Model()
#%%
model.data
model.train()
#%%
def predict(model, path, result_path):
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
with open(result_path, "w+", encoding="UTF-8") as f:
for text in data:
words = word_tokenize(model.clean(text))
if len(words) < 2:
prediction = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else:
prediction = model.predict((words[-2], words[-1]))
f.write(prediction + "\n")
predict(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
predict(model, "test-A/in.tsv.xz", "test-A/out.tsv")