This commit is contained in:
Anna Nowak 2022-04-12 10:01:45 +02:00
parent 3a9168b302
commit ed3af7d037
12 changed files with 3811 additions and 172 deletions

View File

@ -1,9 +0,0 @@
Challenging America word-gap prediction
===================================
Guess a word in a gap.
Evaluation metric
-----------------
LikelihoodHashed is the metric

3730
dev-0/out.tsv Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,163 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"unxz: challenging-america-word-gap-prediction/train/in.tsv.xz: No such file or directory\n",
"unxz: challenging-america-word-gap-prediction/test-A/in.tsv.xz: No such file or directory\n",
"unxz: challenging-america-word-gap-prediction/dev-0/in.tsv.xz: No such file or directory\n"
]
}
],
"source": [
"!unxz challenging-america-word-gap-prediction/train/in.tsv.xz --keep\n",
"!unxz challenging-america-word-gap-prediction/test-A/in.tsv.xz --keep\n",
"!unxz challenging-america-word-gap-prediction/dev-0/in.tsv.xz --keep"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"expected.tsv in.tsv\n"
]
}
],
"source": [
"!ls challenging-america-word-gap-prediction/train"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"All texts: 10\n",
"All labels: 10\n"
]
}
],
"source": [
"import nltk\n",
"def get_texts():\n",
" with open(\"challenging-america-word-gap-prediction/train/in.tsv\", \"r\", encoding=\"UTF-8\") as f:\n",
" i = 0\n",
" while True:\n",
" i+=1\n",
" text = f.readline()\n",
" if(text == None or i > 10):\n",
" break\n",
" text = text.split('\\t')[6]\n",
" text = text.replace(\"-\\n\", \"\").replace(\"\\n\", \" \")\n",
" yield \n",
"\n",
"# def get_words():\n",
"# for text in get_texts():\n",
"# for word in nltk.word_tokenize(text):\n",
"# yield word\n",
"\n",
"def get_labels():\n",
" with open(\"challenging-america-word-gap-prediction/train/expected.tsv\", \"r\", encoding=\"UTF-8\") as f:\n",
" yield from f.readlines()[0:10]\n",
"\n",
"texts_sum = sum(1 for text in get_texts())\n",
"labels_sum = sum(1 for label in get_labels())\n",
"# words_sum = sum(1 for word in get_words())\n",
"print(f\"All texts: {texts_sum}\")\n",
"print(f\"All labels: {labels_sum}\")\n",
"# print(f\"All words: {words_sum}\")"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n",
"None\n",
"None\n",
"None\n",
"None\n",
"None\n",
"None\n",
"None\n",
"None\n",
"None\n"
]
}
],
"source": [
"for text in get_texts():\n",
" print(text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Model bigramowy odwrotny"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class Model():\n",
" def __init__(self, vocab_size, UNK_token= '<UNK>'):\n",
" pass\n",
" \n",
" def train(corpus:list) -> None:\n",
" pass\n",
" \n",
" def predict(text: list, probs: str) -> float:\n",
" pass"
]
}
],
"metadata": {
"interpreter": {
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
},
"kernelspec": {
"display_name": "Python 3.8.5 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}

81
run.py Normal file
View File

@ -0,0 +1,81 @@
#%%
import pandas as pd
from collections import defaultdict, Counter
from sqlalchemy import true
from nltk import trigrams, word_tokenize, bigrams
import csv
#%%
class Model:
def __init__(self):
self.model = defaultdict(lambda: defaultdict(lambda: 0))
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[[6, 7]]
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
data = pd.concat([train_in, train_expected], axis=1)
self.data = data[6] + data[0] + data[7]
self.data = self.data.apply(self.clean)
def clean(self, text):
text = str(text).lower().strip().replace("", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
return text
def train(self):
alpha = 0.7
vocab = set()
for text in model.data:
words = word_tokenize(text)
for w1, w2, w3 in trigrams(words, pad_left=True, pad_right=True):
self.model[w1, w2][w3] += 1
vocab.add(w1)
vocab.add(w2)
vocab.add(w3)
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
self.model_bi[w1][w2] +=1
for w1, w2 in self.model:
total_count = float(sum(self.model[w1, w2].values()))
denominator = total_count * len(vocab)
for w in self.model[w1, w2]:
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
for w1 in self.model_bi:
total_count = float(sum(self.model_bi[w1].values()))
denominator = total_count * len(vocab)
for w in self.model_bi[w1]:
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
def predict(self, words):
trigrams = Counter(dict(self.model[words]))
bigrams = Counter(dict(self.model_bi[words[-1]]))
predictions = dict((trigrams + bigrams).most_common(6))
total_prob = 0
result = ""
for word, prob in predictions.items():
total_prob += prob
result += f"{word}:{prob} "
if len(result) == 0:
return "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
return result + f":{max(1-total_prob, 0.01)}"
model = Model()
#%%
model.data
model.train()
#%%
def predict(model, path, result_path):
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
with open(result_path, "w+", encoding="UTF-8") as f:
for text in data:
words = word_tokenize(model.clean(text))
if len(words) < 2:
prediction = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
else:
prediction = model.predict((words[-2], words[-1]))
f.write(prediction + "\n")
predict(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
predict(model, "test-A/in.tsv.xz", "test-A/out.tsv")

View File

Can't render this file because it is too large.