test
This commit is contained in:
parent
3a9168b302
commit
ed3af7d037
@ -1,9 +0,0 @@
|
|||||||
Challenging America word-gap prediction
|
|
||||||
===================================
|
|
||||||
|
|
||||||
Guess a word in a gap.
|
|
||||||
|
|
||||||
Evaluation metric
|
|
||||||
-----------------
|
|
||||||
|
|
||||||
LikelihoodHashed is the metric
|
|
3730
dev-0/out.tsv
Normal file
3730
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
163
notebook.ipynb
163
notebook.ipynb
@ -1,163 +0,0 @@
|
|||||||
{
|
|
||||||
"cells": [
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 11,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"unxz: challenging-america-word-gap-prediction/train/in.tsv.xz: No such file or directory\n",
|
|
||||||
"unxz: challenging-america-word-gap-prediction/test-A/in.tsv.xz: No such file or directory\n",
|
|
||||||
"unxz: challenging-america-word-gap-prediction/dev-0/in.tsv.xz: No such file or directory\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"!unxz challenging-america-word-gap-prediction/train/in.tsv.xz --keep\n",
|
|
||||||
"!unxz challenging-america-word-gap-prediction/test-A/in.tsv.xz --keep\n",
|
|
||||||
"!unxz challenging-america-word-gap-prediction/dev-0/in.tsv.xz --keep"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 2,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"expected.tsv in.tsv\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"!ls challenging-america-word-gap-prediction/train"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 50,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"All texts: 10\n",
|
|
||||||
"All labels: 10\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"import nltk\n",
|
|
||||||
"def get_texts():\n",
|
|
||||||
" with open(\"challenging-america-word-gap-prediction/train/in.tsv\", \"r\", encoding=\"UTF-8\") as f:\n",
|
|
||||||
" i = 0\n",
|
|
||||||
" while True:\n",
|
|
||||||
" i+=1\n",
|
|
||||||
" text = f.readline()\n",
|
|
||||||
" if(text == None or i > 10):\n",
|
|
||||||
" break\n",
|
|
||||||
" text = text.split('\\t')[6]\n",
|
|
||||||
" text = text.replace(\"-\\n\", \"\").replace(\"\\n\", \" \")\n",
|
|
||||||
" yield \n",
|
|
||||||
"\n",
|
|
||||||
"# def get_words():\n",
|
|
||||||
"# for text in get_texts():\n",
|
|
||||||
"# for word in nltk.word_tokenize(text):\n",
|
|
||||||
"# yield word\n",
|
|
||||||
"\n",
|
|
||||||
"def get_labels():\n",
|
|
||||||
" with open(\"challenging-america-word-gap-prediction/train/expected.tsv\", \"r\", encoding=\"UTF-8\") as f:\n",
|
|
||||||
" yield from f.readlines()[0:10]\n",
|
|
||||||
"\n",
|
|
||||||
"texts_sum = sum(1 for text in get_texts())\n",
|
|
||||||
"labels_sum = sum(1 for label in get_labels())\n",
|
|
||||||
"# words_sum = sum(1 for word in get_words())\n",
|
|
||||||
"print(f\"All texts: {texts_sum}\")\n",
|
|
||||||
"print(f\"All labels: {labels_sum}\")\n",
|
|
||||||
"# print(f\"All words: {words_sum}\")"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": 51,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [
|
|
||||||
{
|
|
||||||
"name": "stdout",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n",
|
|
||||||
"None\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
|
||||||
"for text in get_texts():\n",
|
|
||||||
" print(text)"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "markdown",
|
|
||||||
"metadata": {},
|
|
||||||
"source": [
|
|
||||||
"## Model bigramowy odwrotny"
|
|
||||||
]
|
|
||||||
},
|
|
||||||
{
|
|
||||||
"cell_type": "code",
|
|
||||||
"execution_count": null,
|
|
||||||
"metadata": {},
|
|
||||||
"outputs": [],
|
|
||||||
"source": [
|
|
||||||
"class Model():\n",
|
|
||||||
" def __init__(self, vocab_size, UNK_token= '<UNK>'):\n",
|
|
||||||
" pass\n",
|
|
||||||
" \n",
|
|
||||||
" def train(corpus:list) -> None:\n",
|
|
||||||
" pass\n",
|
|
||||||
" \n",
|
|
||||||
" def predict(text: list, probs: str) -> float:\n",
|
|
||||||
" pass"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"metadata": {
|
|
||||||
"interpreter": {
|
|
||||||
"hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
|
|
||||||
},
|
|
||||||
"kernelspec": {
|
|
||||||
"display_name": "Python 3.8.5 64-bit",
|
|
||||||
"language": "python",
|
|
||||||
"name": "python3"
|
|
||||||
},
|
|
||||||
"language_info": {
|
|
||||||
"codemirror_mode": {
|
|
||||||
"name": "ipython",
|
|
||||||
"version": 3
|
|
||||||
},
|
|
||||||
"file_extension": ".py",
|
|
||||||
"mimetype": "text/x-python",
|
|
||||||
"name": "python",
|
|
||||||
"nbconvert_exporter": "python",
|
|
||||||
"pygments_lexer": "ipython3",
|
|
||||||
"version": "3.8.5"
|
|
||||||
},
|
|
||||||
"orig_nbformat": 4
|
|
||||||
},
|
|
||||||
"nbformat": 4,
|
|
||||||
"nbformat_minor": 2
|
|
||||||
}
|
|
81
run.py
Normal file
81
run.py
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
#%%
|
||||||
|
import pandas as pd
|
||||||
|
from collections import defaultdict, Counter
|
||||||
|
|
||||||
|
from sqlalchemy import true
|
||||||
|
from nltk import trigrams, word_tokenize, bigrams
|
||||||
|
import csv
|
||||||
|
|
||||||
|
#%%
|
||||||
|
class Model:
|
||||||
|
def __init__(self):
|
||||||
|
self.model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
self.model_bi = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
train_in = pd.read_csv("train/in.tsv.xz", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[[6, 7]]
|
||||||
|
train_expected = pd.read_csv("train/expected.tsv", sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)
|
||||||
|
data = pd.concat([train_in, train_expected], axis=1)
|
||||||
|
self.data = data[6] + data[0] + data[7]
|
||||||
|
self.data = self.data.apply(self.clean)
|
||||||
|
|
||||||
|
def clean(self, text):
|
||||||
|
text = str(text).lower().strip().replace("’", "'").replace('\\n', " ").replace("'t", " not").replace("'s", " is").replace("'ll", " will").replace("'m", " am").replace("'ve", " have").replace(",", "").replace("-", "")
|
||||||
|
return text
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
alpha = 0.7
|
||||||
|
vocab = set()
|
||||||
|
for text in model.data:
|
||||||
|
words = word_tokenize(text)
|
||||||
|
for w1, w2, w3 in trigrams(words, pad_left=True, pad_right=True):
|
||||||
|
self.model[w1, w2][w3] += 1
|
||||||
|
vocab.add(w1)
|
||||||
|
vocab.add(w2)
|
||||||
|
vocab.add(w3)
|
||||||
|
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
|
||||||
|
self.model_bi[w1][w2] +=1
|
||||||
|
for w1, w2 in self.model:
|
||||||
|
total_count = float(sum(self.model[w1, w2].values()))
|
||||||
|
denominator = total_count * len(vocab)
|
||||||
|
for w in self.model[w1, w2]:
|
||||||
|
self.model[w1, w2][w] = self.model[w1, w2][w] / denominator * alpha
|
||||||
|
for w1 in self.model_bi:
|
||||||
|
total_count = float(sum(self.model_bi[w1].values()))
|
||||||
|
denominator = total_count * len(vocab)
|
||||||
|
for w in self.model_bi[w1]:
|
||||||
|
self.model_bi[w1][w] = self.model_bi[w1][w] / denominator * (1-alpha)
|
||||||
|
|
||||||
|
def predict(self, words):
|
||||||
|
trigrams = Counter(dict(self.model[words]))
|
||||||
|
bigrams = Counter(dict(self.model_bi[words[-1]]))
|
||||||
|
predictions = dict((trigrams + bigrams).most_common(6))
|
||||||
|
total_prob = 0
|
||||||
|
|
||||||
|
result = ""
|
||||||
|
for word, prob in predictions.items():
|
||||||
|
total_prob += prob
|
||||||
|
result += f"{word}:{prob} "
|
||||||
|
|
||||||
|
if len(result) == 0:
|
||||||
|
return "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||||
|
return result + f":{max(1-total_prob, 0.01)}"
|
||||||
|
|
||||||
|
model = Model()
|
||||||
|
|
||||||
|
#%%
|
||||||
|
model.data
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
#%%
|
||||||
|
def predict(model, path, result_path):
|
||||||
|
data = pd.read_csv(path, sep='\t', header=None, encoding="UTF-8", on_bad_lines="skip", quoting=csv.QUOTE_NONE)[7]
|
||||||
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
||||||
|
for text in data:
|
||||||
|
words = word_tokenize(model.clean(text))
|
||||||
|
if len(words) < 2:
|
||||||
|
prediction = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
||||||
|
else:
|
||||||
|
prediction = model.predict((words[-2], words[-1]))
|
||||||
|
f.write(prediction + "\n")
|
||||||
|
|
||||||
|
predict(model, "dev-0/in.tsv.xz", "dev-0/out.tsv")
|
||||||
|
predict(model, "test-A/in.tsv.xz", "test-A/out.tsv")
|
Can't render this file because it is too large.
|
Loading…
Reference in New Issue
Block a user