ium_434765/evaluate_network.py

51 lines
1.7 KiB
Python
Raw Normal View History

2021-05-17 22:04:40 +02:00
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from tensorflow import keras
2021-05-20 19:50:46 +02:00
import matplotlib.pyplot as plt
2021-05-17 22:04:40 +02:00
model = keras.models.load_model('model')
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
2021-05-20 19:50:46 +02:00
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
2021-05-17 22:04:40 +02:00
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction = model.predict(X_test)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
2021-05-20 18:19:54 +02:00
2021-05-20 18:34:51 +02:00
with open("rmse.txt", "a") as file:
2021-05-20 18:31:51 +02:00
file.write(str(error) + "\n")
2021-05-20 19:50:46 +02:00
with open("rmse.txt", "r") as file:
lines = file.readlines()
plt.plot(range(len(lines)), [line[:-2] for line in lines])
plt.tight_layout()
plt.ylabel('RMSE')
plt.xlabel('evaluation no')
plt.savefig('evaluation.png')