Compare commits

...

15 Commits

Author SHA1 Message Date
71f5a4a19a conda env 2021-05-30 20:41:35 +02:00
c6e97633ef sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 23:28:26 +02:00
c514fce4bc sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 23:25:37 +02:00
fde3364b97 sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 22:28:29 +02:00
cf01ed98de sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 22:26:57 +02:00
cf123e1fa6 sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 22:21:51 +02:00
19be7ca6eb sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 22:14:33 +02:00
3e23841578 sacred
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 22:10:16 +02:00
b0346d0b62 trigger other projects
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 19:16:04 +02:00
b8b98f9f85 trigger other projects 2021-05-20 19:15:23 +02:00
4ed875434b trigger other projects
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 19:03:48 +02:00
eab239b6a1 trigger other projects
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-20 18:45:26 +02:00
67a31c4c43 trigger other projects 2021-05-20 18:44:00 +02:00
1f2d929c2e evaluation branch
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-17 22:44:59 +02:00
b210a2939f evaluation branch
All checks were successful
s434765-training/pipeline/head This commit looks good
2021-05-17 22:43:21 +02:00
31 changed files with 1564 additions and 488 deletions

View File

@ -8,6 +8,9 @@ RUN pip3 install pandas
RUN pip3 install kaggle RUN pip3 install kaggle
RUN pip3 install tensorflow RUN pip3 install tensorflow
RUN pip3 install sklearn RUN pip3 install sklearn
RUN pip3 install pymongo
RUN pip3 install sacred
RUN pip3 install GitPython
COPY ./data_train ./ COPY ./data_train ./
COPY ./data_dev ./ COPY ./data_dev ./
COPY ./neural_network.sh ./ COPY ./neural_network.sh ./

7
Jenkinsfile vendored
View File

@ -38,5 +38,8 @@ node {
} }
} }
} }
} stage ("build training") {
build 's434765-training/master/'
}
}

View File

@ -2,6 +2,7 @@ node {
stage('Preparation') { stage('Preparation') {
properties([ properties([
copyArtifactPermission('s434765-training'),
parameters([ parameters([
buildSelector(defaultSelector: lastSuccessful(), buildSelector(defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts', description: 'Which build to use for copying artifacts',
@ -16,7 +17,7 @@ node {
} }
stage('Clone repo') { stage('Clone repo') {
try { docker.image("karopa/ium:11").inside { /*try {*/ docker.image("karopa/ium:27").inside {
stage('Test') { stage('Test') {
checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]]) checkout([$class: 'GitSCM', branches: [[name: '*/master']], doGenerateSubmoduleConfigurations: false, extensions: [], submoduleCfg: [], userRemoteConfigs: [[url: 'https://git.wmi.amu.edu.pl/s434765/ium_434765']]])
copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR") copyArtifacts fingerprintArtifacts: true, projectName: 's434765-create-dataset', selector: buildParameter("BUILD_SELECTOR")
@ -27,8 +28,9 @@ node {
''' '''
archiveArtifacts 'output.txt' archiveArtifacts 'output.txt'
archiveArtifacts 'model/**/*.*' archiveArtifacts 'model/**/*.*'
archiveArtifacts 'my_runs/**/*.*'
} }
emailext body: 'Successful build', /* emailext body: 'Successful build',
subject: "s434765", subject: "s434765",
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms" to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
} }
@ -38,7 +40,11 @@ node {
emailext body: 'Failed build', emailext body: 'Failed build',
subject: "s434765", subject: "s434765",
to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms" to: "26ab8f35.uam.onmicrosoft.com@emea.teams.ms"
throw e throw e*/
} }
}
} }
/* stage ("build evaluation") {
build 's434765-evaluation/evaluation/'
}*/
}

145
environment.yml Normal file
View File

@ -0,0 +1,145 @@
name: myenv
channels:
- defaults
dependencies:
- _tflow_select=2.3.0=eigen
- absl-py=0.12.0=py38haa95532_0
- aiohttp=3.7.4=py38h2bbff1b_1
- astor=0.8.1=py38haa95532_0
- astunparse=1.6.3=py_0
- async-timeout=3.0.1=py38haa95532_0
- attrs=21.2.0=pyhd3eb1b0_0
- blas=1.0=mkl
- blinker=1.4=py38haa95532_0
- brotlipy=0.7.0=py38h2bbff1b_1003
- ca-certificates=2021.5.25=haa95532_1
- cachetools=4.2.2=pyhd3eb1b0_0
- certifi=2020.12.5=py38haa95532_0
- cffi=1.14.5=py38hcd4344a_0
- click=8.0.1=pyhd3eb1b0_0
- coverage=5.5=py38h2bbff1b_2
- cryptography=2.9.2=py38h7a1dbc1_0
- cycler=0.10.0=py38_0
- cython=0.29.23=py38hd77b12b_0
- freetype=2.10.4=hd328e21_0
- gast=0.4.0=py_0
- google-auth=1.30.1=pyhd3eb1b0_0
- google-auth-oauthlib=0.4.1=py_2
- google-pasta=0.2.0=py_0
- grpcio=1.36.1=py38hc60d5dd_1
- h5py=2.10.0=py38h5e291fa_0
- hdf5=1.10.4=h7ebc959_0
- icc_rt=2019.0.0=h0cc432a_1
- icu=58.2=ha925a31_3
- idna=2.10=pyhd3eb1b0_0
- importlib-metadata=3.10.0=py38haa95532_0
- intel-openmp=2021.2.0=haa95532_616
- jpeg=9b=hb83a4c4_2
- keras-applications=1.0.8=py_1
- keras-preprocessing=1.1.2=pyhd3eb1b0_0
- kiwisolver=1.3.1=py38hd77b12b_0
- libpng=1.6.37=h2a8f88b_0
- libprotobuf=3.14.0=h23ce68f_0
- libtiff=4.2.0=hd0e1b90_0
- lz4-c=1.9.3=h2bbff1b_0
- markdown=3.3.4=py38haa95532_0
- matplotlib=3.3.4=py38haa95532_0
- matplotlib-base=3.3.4=py38h49ac443_0
- mkl=2021.2.0=haa95532_296
- mkl-service=2.3.0=py38h2bbff1b_1
- mkl_fft=1.3.0=py38h277e83a_2
- mkl_random=1.2.1=py38hf11a4ad_2
- multidict=5.1.0=py38h2bbff1b_2
- numpy=1.20.2=py38ha4e8547_0
- numpy-base=1.20.2=py38hc2deb75_0
- oauthlib=3.1.0=py_0
- olefile=0.46=py_0
- openssl=1.1.1k=h2bbff1b_0
- opt_einsum=3.3.0=pyhd3eb1b0_1
- pandas=1.2.4=py38hd77b12b_0
- pillow=8.2.0=py38h4fa10fc_0
- pip=21.1.1=py38haa95532_0
- protobuf=3.14.0=py38hd77b12b_1
- pyasn1=0.4.8=py_0
- pyasn1-modules=0.2.8=py_0
- pycparser=2.20=py_2
- pyjwt=2.1.0=py38haa95532_0
- pyopenssl=20.0.1=pyhd3eb1b0_1
- pyparsing=2.4.7=pyhd3eb1b0_0
- pyqt=5.9.2=py38ha925a31_4
- pyreadline=2.1=py38_1
- pysocks=1.7.1=py38haa95532_0
- python=3.8.10=hdbf39b2_7
- python-dateutil=2.8.1=pyhd3eb1b0_0
- pytz=2021.1=pyhd3eb1b0_0
- qt=5.9.7=vc14h73c81de_0
- requests=2.25.1=pyhd3eb1b0_0
- requests-oauthlib=1.3.0=py_0
- rsa=4.7.2=pyhd3eb1b0_1
- scipy=1.6.2=py38h66253e8_1
- setuptools=52.0.0=py38haa95532_0
- sip=4.19.13=py38ha925a31_0
- six=1.15.0=py38haa95532_0
- sqlite=3.35.4=h2bbff1b_0
- tensorboard=2.5.0=py_0
- tensorboard-plugin-wit=1.6.0=py_0
- tensorflow=2.3.0=mkl_py38h8c0d9a2_0
- tensorflow-base=2.3.0=eigen_py38h75a453f_0
- tensorflow-estimator=2.5.0=pyh7b7c402_0
- termcolor=1.1.0=py38haa95532_1
- tk=8.6.10=he774522_0
- tornado=6.1=py38h2bbff1b_0
- typing-extensions=3.7.4.3=hd3eb1b0_0
- typing_extensions=3.7.4.3=pyh06a4308_0
- vc=14.2=h21ff451_1
- vs2015_runtime=14.27.29016=h5e58377_2
- wheel=0.36.2=pyhd3eb1b0_0
- win_inet_pton=1.1.0=py38haa95532_0
- wincertstore=0.2=py38_0
- wrapt=1.12.1=py38he774522_1
- xz=5.2.5=h62dcd97_0
- yarl=1.6.3=py38h2bbff1b_0
- zipp=3.4.1=pyhd3eb1b0_0
- zlib=1.2.11=h62dcd97_4
- zstd=1.4.9=h19a0ad4_0
- pip:
- alembic==1.4.1
- chardet==4.0.0
- cloudpickle==1.6.0
- colorama==0.4.4
- databricks-cli==0.14.3
- docker==5.0.0
- entrypoints==0.3
- flask==2.0.1
- gitdb==4.0.7
- gitpython==3.1.17
- greenlet==1.1.0
- itsdangerous==2.0.1
- jinja2==3.0.1
- joblib==1.0.1
- kaggle==1.5.12
- mako==1.1.4
- markupsafe==2.0.1
- mlflow==1.17.0
- prometheus-client==0.10.1
- prometheus-flask-exporter==0.18.2
- python-editor==1.0.4
- python-slugify==5.0.2
- pywin32==227
- pyyaml==5.4.1
- querystring-parser==1.2.4
- scikit-learn==0.24.2
- sklearn==0.0
- smmap==4.0.0
- sqlalchemy==1.4.17
- sqlparse==0.4.1
- tabulate==0.8.9
- tensorboard-data-server==0.6.1
- text-unidecode==1.3
- threadpoolctl==2.1.0
- tqdm==4.61.0
- urllib3==1.26.5
- waitress==2.0.0
- websocket-client==1.0.1
- werkzeug==2.0.1
prefix: C:\Users\karol\anaconda3\envs\myenv

BIN
evaluation.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

9
model/keras_metadata.pb Normal file

File diff suppressed because one or more lines are too long

BIN
model/saved_model.pb Normal file

Binary file not shown.

Binary file not shown.

Binary file not shown.

4
my_runs/1/config.json Normal file
View File

@ -0,0 +1,4 @@
{
"epochs_amount": 30,
"seed": 511320143
}

79
my_runs/1/cout.txt Normal file
View File

@ -0,0 +1,79 @@
views 0
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
Epoch 1/30
1/19 [>.............................] - ETA: 6s - loss: 0.0834 - mean_absolute_error: 0.0834 19/19 [==============================] - 1s 10ms/step - loss: 0.0679 - mean_absolute_error: 0.0679 - val_loss: 0.0670 - val_mean_absolute_error: 0.0670
Epoch 2/30
1/19 [>.............................] - ETA: 0s - loss: 0.1142 - mean_absolute_error: 0.1142 19/19 [==============================] - 0s 2ms/step - loss: 0.0657 - mean_absolute_error: 0.0657 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
Epoch 3/30
1/19 [>.............................] - ETA: 0s - loss: 0.0940 - mean_absolute_error: 0.0940 19/19 [==============================] - 0s 2ms/step - loss: 0.0608 - mean_absolute_error: 0.0608 - val_loss: 0.0600 - val_mean_absolute_error: 0.0600
Epoch 4/30
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524 19/19 [==============================] - 0s 2ms/step - loss: 0.0521 - mean_absolute_error: 0.0521 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
Epoch 5/30
1/19 [>.............................] - ETA: 0s - loss: 0.0440 - mean_absolute_error: 0.0440 19/19 [==============================] - 0s 2ms/step - loss: 0.0518 - mean_absolute_error: 0.0518 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
Epoch 6/30
1/19 [>.............................] - ETA: 0s - loss: 0.0576 - mean_absolute_error: 0.0576 19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
Epoch 7/30
1/19 [>.............................] - ETA: 0s - loss: 0.0310 - mean_absolute_error: 0.0310 19/19 [==============================] - 0s 2ms/step - loss: 0.0497 - mean_absolute_error: 0.0497 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
Epoch 8/30
1/19 [>.............................] - ETA: 0s - loss: 0.0628 - mean_absolute_error: 0.0628 19/19 [==============================] - 0s 2ms/step - loss: 0.0531 - mean_absolute_error: 0.0531 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
Epoch 9/30
1/19 [>.............................] - ETA: 0s - loss: 0.0425 - mean_absolute_error: 0.0425 19/19 [==============================] - 0s 2ms/step - loss: 0.0543 - mean_absolute_error: 0.0543 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
Epoch 10/30
1/19 [>.............................] - ETA: 0s - loss: 0.0560 - mean_absolute_error: 0.0560 19/19 [==============================] - 0s 2ms/step - loss: 0.0549 - mean_absolute_error: 0.0549 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
Epoch 11/30
1/19 [>.............................] - ETA: 0s - loss: 0.0391 - mean_absolute_error: 0.0391 19/19 [==============================] - 0s 2ms/step - loss: 0.0520 - mean_absolute_error: 0.0520 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
Epoch 12/30
1/19 [>.............................] - ETA: 0s - loss: 0.0417 - mean_absolute_error: 0.0417 19/19 [==============================] - 0s 2ms/step - loss: 0.0578 - mean_absolute_error: 0.0578 - val_loss: 0.0522 - val_mean_absolute_error: 0.0522
Epoch 13/30
1/19 [>.............................] - ETA: 0s - loss: 0.0834 - mean_absolute_error: 0.0834 19/19 [==============================] - 0s 2ms/step - loss: 0.0605 - mean_absolute_error: 0.0605 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
Epoch 14/30
1/19 [>.............................] - ETA: 0s - loss: 0.0430 - mean_absolute_error: 0.0430 19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
Epoch 15/30
1/19 [>.............................] - ETA: 0s - loss: 0.0506 - mean_absolute_error: 0.0506 19/19 [==============================] - 0s 2ms/step - loss: 0.0512 - mean_absolute_error: 0.0512 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
Epoch 16/30
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402 19/19 [==============================] - 0s 2ms/step - loss: 0.0514 - mean_absolute_error: 0.0514 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
Epoch 17/30
1/19 [>.............................] - ETA: 0s - loss: 0.0247 - mean_absolute_error: 0.0247 19/19 [==============================] - 0s 2ms/step - loss: 0.0463 - mean_absolute_error: 0.0463 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
Epoch 18/30
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401 19/19 [==============================] - 0s 2ms/step - loss: 0.0537 - mean_absolute_error: 0.0537 - val_loss: 0.0568 - val_mean_absolute_error: 0.0568
Epoch 19/30
1/19 [>.............................] - ETA: 0s - loss: 0.0930 - mean_absolute_error: 0.0930 19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0523 - val_mean_absolute_error: 0.0523
Epoch 20/30
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631 19/19 [==============================] - 0s 2ms/step - loss: 0.0577 - mean_absolute_error: 0.0577 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
Epoch 21/30
1/19 [>.............................] - ETA: 0s - loss: 0.0524 - mean_absolute_error: 0.0524 19/19 [==============================] - 0s 2ms/step - loss: 0.0538 - mean_absolute_error: 0.0538 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
Epoch 22/30
1/19 [>.............................] - ETA: 0s - loss: 0.0435 - mean_absolute_error: 0.0435 19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0594 - val_mean_absolute_error: 0.0594
Epoch 23/30
1/19 [>.............................] - ETA: 0s - loss: 0.0324 - mean_absolute_error: 0.0324 19/19 [==============================] - 0s 2ms/step - loss: 0.0573 - mean_absolute_error: 0.0573 - val_loss: 0.0537 - val_mean_absolute_error: 0.0537
Epoch 24/30
1/19 [>.............................] - ETA: 0s - loss: 0.0354 - mean_absolute_error: 0.0354 19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
Epoch 25/30
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474 19/19 [==============================] - 0s 2ms/step - loss: 0.0539 - mean_absolute_error: 0.0539 - val_loss: 0.0525 - val_mean_absolute_error: 0.0525
Epoch 26/30
1/19 [>.............................] - ETA: 0s - loss: 0.0928 - mean_absolute_error: 0.0928 19/19 [==============================] - 0s 2ms/step - loss: 0.0612 - mean_absolute_error: 0.0612 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
Epoch 27/30
1/19 [>.............................] - ETA: 0s - loss: 0.0582 - mean_absolute_error: 0.0582 19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0548 - val_mean_absolute_error: 0.0548
Epoch 28/30
1/19 [>.............................] - ETA: 0s - loss: 0.0415 - mean_absolute_error: 0.0415 19/19 [==============================] - 0s 2ms/step - loss: 0.0511 - mean_absolute_error: 0.0511 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
Epoch 29/30
1/19 [>.............................] - ETA: 0s - loss: 0.0491 - mean_absolute_error: 0.0491 19/19 [==============================] - 0s 3ms/step - loss: 0.0532 - mean_absolute_error: 0.0532 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
Epoch 30/30
1/19 [>.............................] - ETA: 0s - loss: 0.0475 - mean_absolute_error: 0.0475 19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0529 - val_mean_absolute_error: 0.0529
views 1
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
114882.99377127373
114882.99377127373
114882.99377127373

3
my_runs/1/info.json Normal file
View File

@ -0,0 +1,3 @@
{
"prepare_message_ts": "2021-05-20 21:59:18.264490"
}

1
my_runs/1/metrics.json Normal file
View File

@ -0,0 +1 @@
{}

87
my_runs/1/run.json Normal file
View File

@ -0,0 +1,87 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
"dependencies": [
"numpy==1.19.5",
"pandas==1.2.4",
"sacred==0.8.2",
"tensorflow==2.5.0rc1"
],
"mainfile": "neural_network.py",
"name": "sacred_scopes",
"repositories": [
{
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
"dirty": true,
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
},
{
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
"dirty": true,
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
}
],
"sources": [
[
"evaluate_network.py",
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
],
[
"neural_network.py",
"_sources\\neural_network_cdaa9eab635a60c87899a6eaac9e398e.py"
]
]
},
"heartbeat": "2021-05-20T19:59:22.263859",
"host": {
"ENV": {},
"cpu": "Unknown",
"gpus": {
"driver_version": "452.06",
"gpus": [
{
"model": "GeForce GTX 1650 Ti",
"persistence_mode": false,
"total_memory": 4096
}
]
},
"hostname": "DESKTOP-5PRPHO6",
"os": [
"Windows",
"Windows-10-10.0.19041-SP0"
],
"python_version": "3.9.2"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-20T19:59:18.258489",
"status": "COMPLETED",
"stop_time": "2021-05-20T19:59:22.263859"
}

4
my_runs/2/config.json Normal file
View File

@ -0,0 +1,4 @@
{
"epochs_amount": 30,
"seed": 535480662
}

78
my_runs/2/cout.txt Normal file
View File

@ -0,0 +1,78 @@
views 0
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
Epoch 1/30
1/19 [>.............................] - ETA: 6s - loss: 0.1168 - mean_absolute_error: 0.1168 19/19 [==============================] - 1s 10ms/step - loss: 0.0788 - mean_absolute_error: 0.0788 - val_loss: 0.0639 - val_mean_absolute_error: 0.0639
Epoch 2/30
1/19 [>.............................] - ETA: 0s - loss: 0.0699 - mean_absolute_error: 0.0699 19/19 [==============================] - 0s 2ms/step - loss: 0.0622 - mean_absolute_error: 0.0622 - val_loss: 0.0589 - val_mean_absolute_error: 0.0589
Epoch 3/30
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547 19/19 [==============================] - 0s 2ms/step - loss: 0.0566 - mean_absolute_error: 0.0566 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
Epoch 4/30
1/19 [>.............................] - ETA: 0s - loss: 0.0351 - mean_absolute_error: 0.0351 19/19 [==============================] - 0s 2ms/step - loss: 0.0534 - mean_absolute_error: 0.0534 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
Epoch 5/30
1/19 [>.............................] - ETA: 0s - loss: 0.0436 - mean_absolute_error: 0.0436 19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
Epoch 6/30
1/19 [>.............................] - ETA: 0s - loss: 0.0474 - mean_absolute_error: 0.0474 19/19 [==============================] - 0s 2ms/step - loss: 0.0513 - mean_absolute_error: 0.0513 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
Epoch 7/30
1/19 [>.............................] - ETA: 0s - loss: 0.0714 - mean_absolute_error: 0.0714 19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0519 - val_mean_absolute_error: 0.0519
Epoch 8/30
1/19 [>.............................] - ETA: 0s - loss: 0.0567 - mean_absolute_error: 0.0567 19/19 [==============================] - 0s 2ms/step - loss: 0.0535 - mean_absolute_error: 0.0535 - val_loss: 0.0526 - val_mean_absolute_error: 0.0526
Epoch 9/30
1/19 [>.............................] - ETA: 0s - loss: 0.0472 - mean_absolute_error: 0.0472 19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0559 - val_mean_absolute_error: 0.0559
Epoch 10/30
1/19 [>.............................] - ETA: 0s - loss: 0.0634 - mean_absolute_error: 0.0634 19/19 [==============================] - 0s 2ms/step - loss: 0.0528 - mean_absolute_error: 0.0528 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
Epoch 11/30
1/19 [>.............................] - ETA: 0s - loss: 0.0412 - mean_absolute_error: 0.0412 19/19 [==============================] - 0s 2ms/step - loss: 0.0529 - mean_absolute_error: 0.0529 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
Epoch 12/30
1/19 [>.............................] - ETA: 0s - loss: 0.0390 - mean_absolute_error: 0.0390 19/19 [==============================] - 0s 2ms/step - loss: 0.0496 - mean_absolute_error: 0.0496 - val_loss: 0.0596 - val_mean_absolute_error: 0.0596
Epoch 13/30
1/19 [>.............................] - ETA: 0s - loss: 0.0625 - mean_absolute_error: 0.0625 19/19 [==============================] - 0s 2ms/step - loss: 0.0545 - mean_absolute_error: 0.0545 - val_loss: 0.0560 - val_mean_absolute_error: 0.0560
Epoch 14/30
1/19 [>.............................] - ETA: 0s - loss: 0.0206 - mean_absolute_error: 0.0206 19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
Epoch 15/30
1/19 [>.............................] - ETA: 0s - loss: 0.0311 - mean_absolute_error: 0.0311 19/19 [==============================] - 0s 3ms/step - loss: 0.0486 - mean_absolute_error: 0.0486 - val_loss: 0.0527 - val_mean_absolute_error: 0.0527
Epoch 16/30
1/19 [>.............................] - ETA: 0s - loss: 0.0270 - mean_absolute_error: 0.0270 19/19 [==============================] - 0s 2ms/step - loss: 0.0477 - mean_absolute_error: 0.0477 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
Epoch 17/30
1/19 [>.............................] - ETA: 0s - loss: 0.0808 - mean_absolute_error: 0.0808 19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0546 - val_mean_absolute_error: 0.0546
Epoch 18/30
1/19 [>.............................] - ETA: 0s - loss: 0.0433 - mean_absolute_error: 0.0433 19/19 [==============================] - 0s 2ms/step - loss: 0.0499 - mean_absolute_error: 0.0499 - val_loss: 0.0551 - val_mean_absolute_error: 0.0551
Epoch 19/30
1/19 [>.............................] - ETA: 0s - loss: 0.0431 - mean_absolute_error: 0.0431 19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0530 - val_mean_absolute_error: 0.0530
Epoch 20/30
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298 19/19 [==============================] - 0s 2ms/step - loss: 0.0490 - mean_absolute_error: 0.0490 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
Epoch 21/30
1/19 [>.............................] - ETA: 0s - loss: 0.0499 - mean_absolute_error: 0.0499 19/19 [==============================] - 0s 2ms/step - loss: 0.0555 - mean_absolute_error: 0.0555 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
Epoch 22/30
1/19 [>.............................] - ETA: 0s - loss: 0.0401 - mean_absolute_error: 0.0401 19/19 [==============================] - 0s 2ms/step - loss: 0.0524 - mean_absolute_error: 0.0524 - val_loss: 0.0602 - val_mean_absolute_error: 0.0602
Epoch 23/30
1/19 [>.............................] - ETA: 0s - loss: 0.0652 - mean_absolute_error: 0.0652 19/19 [==============================] - 0s 2ms/step - loss: 0.0596 - mean_absolute_error: 0.0596 - val_loss: 0.0567 - val_mean_absolute_error: 0.0567
Epoch 24/30
1/19 [>.............................] - ETA: 0s - loss: 0.0275 - mean_absolute_error: 0.0275 19/19 [==============================] - 0s 2ms/step - loss: 0.0562 - mean_absolute_error: 0.0562 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
Epoch 25/30
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602 19/19 [==============================] - 0s 2ms/step - loss: 0.0576 - mean_absolute_error: 0.0576 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
Epoch 26/30
1/19 [>.............................] - ETA: 0s - loss: 0.0388 - mean_absolute_error: 0.0388 19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0555 - val_mean_absolute_error: 0.0555
Epoch 27/30
1/19 [>.............................] - ETA: 0s - loss: 0.0711 - mean_absolute_error: 0.0711 19/19 [==============================] - 0s 2ms/step - loss: 0.0560 - mean_absolute_error: 0.0560 - val_loss: 0.0538 - val_mean_absolute_error: 0.0538
Epoch 28/30
1/19 [>.............................] - ETA: 0s - loss: 0.0875 - mean_absolute_error: 0.0875 19/19 [==============================] - 0s 2ms/step - loss: 0.0614 - mean_absolute_error: 0.0614 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
Epoch 29/30
1/19 [>.............................] - ETA: 0s - loss: 0.0462 - mean_absolute_error: 0.0462 19/19 [==============================] - 0s 2ms/step - loss: 0.0544 - mean_absolute_error: 0.0544 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
Epoch 30/30
1/19 [>.............................] - ETA: 0s - loss: 0.0588 - mean_absolute_error: 0.0588 19/19 [==============================] - 0s 2ms/step - loss: 0.0582 - mean_absolute_error: 0.0582 - val_loss: 0.0593 - val_mean_absolute_error: 0.0593
views 1
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
129787.96004765884
129787.96004765884

3
my_runs/2/info.json Normal file
View File

@ -0,0 +1,3 @@
{
"prepare_message_ts": "2021-05-20 22:01:49.105722"
}

13
my_runs/2/metrics.json Normal file
View File

@ -0,0 +1,13 @@
{
"training.metrics": {
"steps": [
0
],
"timestamps": [
"2021-05-20T20:01:53.071700"
],
"values": [
129787.96004765884
]
}
}

87
my_runs/2/run.json Normal file
View File

@ -0,0 +1,87 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
"dependencies": [
"numpy==1.19.5",
"pandas==1.2.4",
"sacred==0.8.2",
"tensorflow==2.5.0rc1"
],
"mainfile": "neural_network.py",
"name": "sacred_scopes",
"repositories": [
{
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
"dirty": true,
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
},
{
"commit": "07479089e2d0bd86c8b0dd3bb005f7178078cc34",
"dirty": true,
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
}
],
"sources": [
[
"evaluate_network.py",
"_sources\\evaluate_network_6bc39a6cabbc78720ddbbd5b23f51cc3.py"
],
[
"neural_network.py",
"_sources\\neural_network_eca667942d0304c50d970a67f9012302.py"
]
]
},
"heartbeat": "2021-05-20T20:01:53.071700",
"host": {
"ENV": {},
"cpu": "Unknown",
"gpus": {
"driver_version": "452.06",
"gpus": [
{
"model": "GeForce GTX 1650 Ti",
"persistence_mode": false,
"total_memory": 4096
}
]
},
"hostname": "DESKTOP-5PRPHO6",
"os": [
"Windows",
"Windows-10-10.0.19041-SP0"
],
"python_version": "3.9.2"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-20T20:01:49.099728",
"status": "COMPLETED",
"stop_time": "2021-05-20T20:01:53.071700"
}

4
my_runs/3/config.json Normal file
View File

@ -0,0 +1,4 @@
{
"epochs_amount": 30,
"seed": 981983024
}

78
my_runs/3/cout.txt Normal file
View File

@ -0,0 +1,78 @@
views 0
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
Epoch 1/30
1/19 [>.............................] - ETA: 7s - loss: 0.1234 - mean_absolute_error: 0.1234 19/19 [==============================] - 1s 10ms/step - loss: 0.0687 - mean_absolute_error: 0.0687 - val_loss: 0.0587 - val_mean_absolute_error: 0.0587
Epoch 2/30
1/19 [>.............................] - ETA: 0s - loss: 0.0764 - mean_absolute_error: 0.0764 19/19 [==============================] - 0s 2ms/step - loss: 0.0583 - mean_absolute_error: 0.0583 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
Epoch 3/30
1/19 [>.............................] - ETA: 0s - loss: 0.0781 - mean_absolute_error: 0.0781 19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0572 - val_mean_absolute_error: 0.0572
Epoch 4/30
1/19 [>.............................] - ETA: 0s - loss: 0.0564 - mean_absolute_error: 0.0564 19/19 [==============================] - 0s 2ms/step - loss: 0.0592 - mean_absolute_error: 0.0592 - val_loss: 0.0541 - val_mean_absolute_error: 0.0541
Epoch 5/30
1/19 [>.............................] - ETA: 0s - loss: 0.0608 - mean_absolute_error: 0.0608 19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0524 - val_mean_absolute_error: 0.0524
Epoch 6/30
1/19 [>.............................] - ETA: 0s - loss: 0.0346 - mean_absolute_error: 0.0346 19/19 [==============================] - 0s 2ms/step - loss: 0.0510 - mean_absolute_error: 0.0510 - val_loss: 0.0544 - val_mean_absolute_error: 0.0544
Epoch 7/30
1/19 [>.............................] - ETA: 0s - loss: 0.0569 - mean_absolute_error: 0.0569 19/19 [==============================] - 0s 2ms/step - loss: 0.0570 - mean_absolute_error: 0.0570 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
Epoch 8/30
1/19 [>.............................] - ETA: 0s - loss: 0.0565 - mean_absolute_error: 0.0565 19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0542 - val_mean_absolute_error: 0.0542
Epoch 9/30
1/19 [>.............................] - ETA: 0s - loss: 0.0829 - mean_absolute_error: 0.0829 19/19 [==============================] - 0s 2ms/step - loss: 0.0563 - mean_absolute_error: 0.0563 - val_loss: 0.0535 - val_mean_absolute_error: 0.0535
Epoch 10/30
1/19 [>.............................] - ETA: 0s - loss: 0.0298 - mean_absolute_error: 0.0298 19/19 [==============================] - 0s 2ms/step - loss: 0.0509 - mean_absolute_error: 0.0509 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
Epoch 11/30
1/19 [>.............................] - ETA: 0s - loss: 0.0376 - mean_absolute_error: 0.0376 19/19 [==============================] - 0s 2ms/step - loss: 0.0546 - mean_absolute_error: 0.0546 - val_loss: 0.0557 - val_mean_absolute_error: 0.0557
Epoch 12/30
1/19 [>.............................] - ETA: 0s - loss: 0.0577 - mean_absolute_error: 0.0577 19/19 [==============================] - 0s 2ms/step - loss: 0.0567 - mean_absolute_error: 0.0567 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
Epoch 13/30
1/19 [>.............................] - ETA: 0s - loss: 0.0537 - mean_absolute_error: 0.0537 19/19 [==============================] - 0s 2ms/step - loss: 0.0552 - mean_absolute_error: 0.0552 - val_loss: 0.0556 - val_mean_absolute_error: 0.0556
Epoch 14/30
1/19 [>.............................] - ETA: 0s - loss: 0.0696 - mean_absolute_error: 0.0696 19/19 [==============================] - 0s 2ms/step - loss: 0.0616 - mean_absolute_error: 0.0616 - val_loss: 0.0571 - val_mean_absolute_error: 0.0571
Epoch 15/30
1/19 [>.............................] - ETA: 0s - loss: 0.0726 - mean_absolute_error: 0.0726 19/19 [==============================] - 0s 2ms/step - loss: 0.0556 - mean_absolute_error: 0.0556 - val_loss: 0.0531 - val_mean_absolute_error: 0.0531
Epoch 16/30
1/19 [>.............................] - ETA: 0s - loss: 0.0448 - mean_absolute_error: 0.0448 19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0562 - val_mean_absolute_error: 0.0562
Epoch 17/30
1/19 [>.............................] - ETA: 0s - loss: 0.0458 - mean_absolute_error: 0.0458 19/19 [==============================] - 0s 2ms/step - loss: 0.0553 - mean_absolute_error: 0.0553 - val_loss: 0.0558 - val_mean_absolute_error: 0.0558
Epoch 18/30
1/19 [>.............................] - ETA: 0s - loss: 0.0547 - mean_absolute_error: 0.0547 19/19 [==============================] - 0s 2ms/step - loss: 0.0590 - mean_absolute_error: 0.0590 - val_loss: 0.0561 - val_mean_absolute_error: 0.0561
Epoch 19/30
1/19 [>.............................] - ETA: 0s - loss: 0.0402 - mean_absolute_error: 0.0402 19/19 [==============================] - 0s 2ms/step - loss: 0.0579 - mean_absolute_error: 0.0579 - val_loss: 0.0554 - val_mean_absolute_error: 0.0554
Epoch 20/30
1/19 [>.............................] - ETA: 0s - loss: 0.0614 - mean_absolute_error: 0.0614 19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0539 - val_mean_absolute_error: 0.0539
Epoch 21/30
1/19 [>.............................] - ETA: 0s - loss: 0.0492 - mean_absolute_error: 0.0492 19/19 [==============================] - 0s 2ms/step - loss: 0.0525 - mean_absolute_error: 0.0525 - val_loss: 0.0540 - val_mean_absolute_error: 0.0540
Epoch 22/30
1/19 [>.............................] - ETA: 0s - loss: 0.0554 - mean_absolute_error: 0.0554 19/19 [==============================] - 0s 2ms/step - loss: 0.0595 - mean_absolute_error: 0.0595 - val_loss: 0.0533 - val_mean_absolute_error: 0.0533
Epoch 23/30
1/19 [>.............................] - ETA: 0s - loss: 0.0664 - mean_absolute_error: 0.0664 19/19 [==============================] - 0s 2ms/step - loss: 0.0533 - mean_absolute_error: 0.0533 - val_loss: 0.0518 - val_mean_absolute_error: 0.0518
Epoch 24/30
1/19 [>.............................] - ETA: 0s - loss: 0.0282 - mean_absolute_error: 0.0282 19/19 [==============================] - 0s 2ms/step - loss: 0.0471 - mean_absolute_error: 0.0471 - val_loss: 0.0517 - val_mean_absolute_error: 0.0517
Epoch 25/30
1/19 [>.............................] - ETA: 0s - loss: 0.0456 - mean_absolute_error: 0.0456 19/19 [==============================] - 0s 2ms/step - loss: 0.0473 - mean_absolute_error: 0.0473 - val_loss: 0.0536 - val_mean_absolute_error: 0.0536
Epoch 26/30
1/19 [>.............................] - ETA: 0s - loss: 0.0668 - mean_absolute_error: 0.0668 19/19 [==============================] - 0s 2ms/step - loss: 0.0571 - mean_absolute_error: 0.0571 - val_loss: 0.0532 - val_mean_absolute_error: 0.0532
Epoch 27/30
1/19 [>.............................] - ETA: 0s - loss: 0.0602 - mean_absolute_error: 0.0602 19/19 [==============================] - 0s 2ms/step - loss: 0.0558 - mean_absolute_error: 0.0558 - val_loss: 0.0520 - val_mean_absolute_error: 0.0520
Epoch 28/30
1/19 [>.............................] - ETA: 0s - loss: 0.0631 - mean_absolute_error: 0.0631 19/19 [==============================] - 0s 2ms/step - loss: 0.0557 - mean_absolute_error: 0.0557 - val_loss: 0.0528 - val_mean_absolute_error: 0.0528
Epoch 29/30
1/19 [>.............................] - ETA: 0s - loss: 0.0601 - mean_absolute_error: 0.0601 19/19 [==============================] - 0s 2ms/step - loss: 0.0526 - mean_absolute_error: 0.0526 - val_loss: 0.0521 - val_mean_absolute_error: 0.0521
Epoch 30/30
1/19 [>.............................] - ETA: 0s - loss: 0.0508 - mean_absolute_error: 0.0508 19/19 [==============================] - 0s 2ms/step - loss: 0.0542 - mean_absolute_error: 0.0542 - val_loss: 0.0534 - val_mean_absolute_error: 0.0534
views 1
dtype: int32
views 488
dtype: int32
likes 1
dtype: int32
likes 3345
dtype: int32
114831.63920784603
114831.63920784603

3
my_runs/3/info.json Normal file
View File

@ -0,0 +1,3 @@
{
"prepare_message_ts": "2021-05-20 22:06:00.289863"
}

13
my_runs/3/metrics.json Normal file
View File

@ -0,0 +1,13 @@
{
"training.metrics": {
"steps": [
0
],
"timestamps": [
"2021-05-20T20:06:03.338305"
],
"values": [
114831.63920784603
]
}
}

79
my_runs/3/run.json Normal file
View File

@ -0,0 +1,79 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "C:\\Users\\karol\\PycharmProjects\\ium_434765",
"dependencies": [
"numpy==1.19.5",
"pandas==1.2.4",
"sacred==0.8.2",
"scikit-learn==0.24.1",
"tensorflow==2.5.0rc1"
],
"mainfile": "neural_network.py",
"name": "sacred_scopes",
"repositories": [
{
"commit": "b0346d0b62846839e512344b20a566135e07a4b2",
"dirty": true,
"url": "https://git.wmi.amu.edu.pl/s434765/ium_434765.git"
}
],
"sources": [
[
"neural_network.py",
"_sources\\neural_network_33e5177d0655bf5fef22fcd226db36b1.py"
]
]
},
"heartbeat": "2021-05-20T20:06:03.339305",
"host": {
"ENV": {},
"cpu": "Unknown",
"gpus": {
"driver_version": "452.06",
"gpus": [
{
"model": "GeForce GTX 1650 Ti",
"persistence_mode": false,
"total_memory": 4096
}
]
},
"hostname": "DESKTOP-5PRPHO6",
"os": [
"Windows",
"Windows-10-10.0.19041-SP0"
],
"python_version": "3.9.2"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-20T20:06:00.285864",
"status": "COMPLETED",
"stop_time": "2021-05-20T20:06:03.339305"
}

View File

@ -0,0 +1,53 @@
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error
from tensorflow import keras
import matplotlib.pyplot as plt
def evaluate_model():
model = keras.models.load_model('model')
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction = model.predict(X_test)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
with open("rmse.txt", "a") as file:
file.write(str(error) + "\n")
with open("rmse.txt", "r") as file:
lines = file.readlines()
plt.plot(range(len(lines)), [line[:-2] for line in lines])
plt.tight_layout()
plt.ylabel('RMSE')
plt.xlabel('evaluation no')
plt.savefig('evaluation.png')
return error

View File

@ -0,0 +1,108 @@
from datetime import datetime
import pandas as pd
import numpy as np
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn.metrics import mean_squared_error
from tensorflow import keras
ex = Experiment("sacred_scopes", interactive=True)
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
# db_name='sacred'))
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
epochs_amount = 30
def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
@ex.capture
def prepare_model(epochs_amount, _run):
_run.info["prepare_message_ts"] = str(datetime.now())
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
"category_id",
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
X = data.loc[:, data.columns == "views"].astype(int)
y = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X)
max_val_sub = np.max(X)
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y)
max_val_like = np.max(y)
y = (y - min_val_like) / (max_val_like - min_val_like)
print(min_val_like)
print(max_val_like)
model = keras.Sequential([
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1, activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction = model.predict(X_test)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
model.save('model')
_run.log_scalar("training.metrics", error)
return error
@ex.main
def my_main(epochs_amount):
print(prepare_model())
ex.run()
ex.add_artifact("model.pb")

View File

@ -0,0 +1,79 @@
from datetime import datetime
import pandas as pd
import numpy as np
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from tensorflow import keras
import sys
from evaluate_network import evaluate_model
ex = Experiment("sacred_scopes", interactive=True)
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
# db_name='sacred'))
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
epochs_amount = 30
def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
@ex.capture
def prepare_model(epochs_amount, _run):
_run.info["prepare_message_ts"] = str(datetime.now())
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
"category_id",
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
X = data.loc[:, data.columns == "views"].astype(int)
y = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X)
max_val_sub = np.max(X)
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y)
max_val_like = np.max(y)
y = (y - min_val_like) / (max_val_like - min_val_like)
print(min_val_like)
print(max_val_like)
model = keras.Sequential([
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1, activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
model.save('model')
metrics = evaluate_model()
print(metrics)
return metrics
@ex.main
def my_main(epochs_amount):
print(prepare_model())
ex.run()
ex.add_artifact("model.pb")

View File

@ -0,0 +1,78 @@
from datetime import datetime
import pandas as pd
import numpy as np
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from tensorflow import keras
import sys
from evaluate_network import evaluate_model
ex = Experiment("sacred_scopes", interactive=True)
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
# db_name='sacred'))
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
epochs_amount = 30
def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data))
@ex.capture
def prepare_model(epochs_amount, _run):
_run.info["prepare_message_ts"] = str(datetime.now())
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
"category_id",
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
X = data.loc[:, data.columns == "views"].astype(int)
y = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X)
max_val_sub = np.max(X)
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y)
max_val_like = np.max(y)
y = (y - min_val_like) / (max_val_like - min_val_like)
print(min_val_like)
print(max_val_like)
model = keras.Sequential([
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1, activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
model.save('model')
metrics = evaluate_model()
_run.log_scalar("training.metrics", metrics)
return metrics
@ex.main
def my_main(epochs_amount):
print(prepare_model())
ex.run()
ex.add_artifact("model.pb")

View File

@ -1,78 +1,109 @@
import sys
from datetime import datetime
import pandas as pd import pandas as pd
import numpy as np import numpy as np
from sacred.observers import FileStorageObserver, MongoObserver
from sacred import Experiment
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_error
from tensorflow import keras from tensorflow import keras
import sys
ex = Experiment("s434765", interactive=True, save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@172.17.0.1:27017',
db_name='sacred'))
ex.observers.append(FileStorageObserver('my_runs'))
@ex.config
def my_config():
epochs_amount = int(sys.argv[1])
def normalize_data(data): def normalize_data(data):
return (data - np.min(data)) / (np.max(data) - np.min(data)) return (data - np.min(data)) / (np.max(data) - np.min(data))
data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False, @ex.capture
names=["video_id", "last_trending_date", "publish_date", "publish_hour", "category_id", def prepare_model(epochs_amount, _run):
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna() _run.info["prepare_message_ts"] = str(datetime.now())
X = data.loc[:,data.columns == "views"].astype(int) data = pd.read_csv("data_train", sep=',', skip_blank_lines=True, nrows=1087, error_bad_lines=False,
y = data.loc[:,data.columns == "likes"].astype(int) names=["vipip install sacreddeo_id", "last_trending_date", "publish_date", "publish_hour",
"category_id",
"channel_title", "views", "likes", "dislikes", "comment_count"]).dropna()
min_val_sub = np.min(X) X = data.loc[:, data.columns == "views"].astype(int)
max_val_sub = np.max(X) y = data.loc[:, data.columns == "likes"].astype(int)
X = (X - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y) min_val_sub = np.min(X)
max_val_like = np.max(y) max_val_sub = np.max(X)
y = (y - min_val_like) / (max_val_like - min_val_like) X = (X - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
print(min_val_like) min_val_like = np.min(y)
print(max_val_like) max_val_like = np.max(y)
y = (y - min_val_like) / (max_val_like - min_val_like)
print(min_val_like)
print(max_val_like)
model = keras.Sequential([
keras.layers.Dense(512, input_dim=X.shape[1], activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1, activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(epochs_amount), validation_split=0.3)
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:, data.columns == "views"].astype(int)
y_test = data.loc[:, data.columns == "likes"].astype(int)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction = model.predict(X_test)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
model.save('model')
_run.log_scalar("training.metrics", error)
return error
model = keras.Sequential([ @ex.main
keras.layers.Dense(512,input_dim = X.shape[1], activation='relu'), def my_main(epochs_amount):
keras.layers.Dense(256, activation='relu'), print(prepare_model())
keras.layers.Dense(256, activation='relu'),
keras.layers.Dense(128, activation='relu'),
keras.layers.Dense(1,activation='linear'),
])
model.compile(loss='mean_absolute_error', optimizer="Adam", metrics=['mean_absolute_error'])
model.fit(X, y, epochs=int(sys.argv[1]), validation_split = 0.3) ex.run()
ex.add_artifact("model/saved_model.pb")
data = pd.read_csv("data_dev", sep=',', error_bad_lines=False,
skip_blank_lines=True, nrows=527, names=["video_id", "last_trending_date",
"publish_date", "publish_hour", "category_id",
"channel_title", "views", "likes", "dislikes",
"comment_count"]).dropna()
X_test = data.loc[:,data.columns == "views"].astype(int)
y_test = data.loc[:,data.columns == "likes"].astype(int)
min_val_sub = np.min(X_test)
max_val_sub = np.max(X_test)
X_test = (X_test - min_val_sub) / (max_val_sub - min_val_sub)
print(min_val_sub)
print(max_val_sub)
min_val_like = np.min(y_test)
max_val_like = np.max(y_test)
print(min_val_like)
print(max_val_like)
prediction = model.predict(X_test)
prediction_denormalized = []
for pred in prediction:
denorm = pred[0] * (max_val_like[0] - min_val_like[0]) + min_val_like[0]
prediction_denormalized.append(denorm)
f = open("predictions.txt", "w")
for (pred, test) in zip(prediction_denormalized, y_test.values):
f.write("predicted: %s expected: %s\n" % (str(pred), str(test[0])))
error = mean_squared_error(y_test, prediction_denormalized)
print(error)
model.save('model')

View File

@ -1,422 +1,422 @@
predicted: 440.75201439857483 expected: 617 predicted: 400.330885887146 expected: 617
predicted: 87.643430352211 expected: 172 predicted: 27.162359654903412 expected: 172
predicted: 1361.890419960022 expected: 611 predicted: 1451.7506175041199 expected: 611
predicted: 168.88216811418533 expected: 269 predicted: 89.5334190428257 expected: 269
predicted: 1361.890419960022 expected: 1095 predicted: 1451.7506175041199 expected: 1095
predicted: 168.88216811418533 expected: 68 predicted: 89.5334190428257 expected: 68
predicted: 50.43718174099922 expected: 5 predicted: 26.76018589735031 expected: 5
predicted: 440.75201439857483 expected: 986 predicted: 400.330885887146 expected: 986
predicted: 242.13134622573853 expected: 262 predicted: 179.86350238323212 expected: 262
predicted: 403.0836160182953 expected: 817 predicted: 357.96860003471375 expected: 817
predicted: 268.44813990592957 expected: 197 predicted: 208.96947646141052 expected: 197
predicted: 218.3946235179901 expected: 264 predicted: 151.92037403583527 expected: 264
predicted: 361.85813999176025 expected: 830 predicted: 311.94646322727203 expected: 830
predicted: 1361.890419960022 expected: 1415 predicted: 1451.7506175041199 expected: 1415
predicted: 359.0711271762848 expected: 134 predicted: 308.85175335407257 expected: 134
predicted: 78.7634365260601 expected: 58 predicted: 26.881321370601654 expected: 58
predicted: 105.04015484452248 expected: 93 predicted: 29.60762630403042 expected: 93
predicted: 504.74084401130676 expected: 830 predicted: 473.10275983810425 expected: 830
predicted: 1361.890419960022 expected: 1207 predicted: 1451.7506175041199 expected: 1207
predicted: 367.3838310241699 expected: 269 predicted: 318.1358331441879 expected: 269
predicted: 488.74388575553894 expected: 558 predicted: 454.97389698028564 expected: 558
predicted: 1237.264790058136 expected: 1558 predicted: 1308.27658700943 expected: 1558
predicted: 90.6400882601738 expected: 37 predicted: 27.31346444785595 expected: 37
predicted: 507.3979513645172 expected: 364 predicted: 476.11863946914673 expected: 364
predicted: 523.3226568698883 expected: 1020 predicted: 494.2209930419922 expected: 1020
predicted: 48.50093571841717 expected: 11 predicted: 26.76018589735031 expected: 11
predicted: 397.6092493534088 expected: 225 predicted: 351.91593730449677 expected: 225
predicted: 507.3979513645172 expected: 228 predicted: 476.11863946914673 expected: 228
predicted: 1237.264790058136 expected: 1184 predicted: 1308.27658700943 expected: 1184
predicted: 383.88376808166504 expected: 370 predicted: 336.6213505268097 expected: 370
predicted: 96.38490444421768 expected: 68 predicted: 27.781967476010323 expected: 68
predicted: 212.50074243545532 expected: 201 predicted: 144.74467933177948 expected: 201
predicted: 1361.890419960022 expected: 1113 predicted: 1451.7506175041199 expected: 1113
predicted: 383.88376808166504 expected: 496 predicted: 336.6213505268097 expected: 496
predicted: 96.38490444421768 expected: 43 predicted: 27.781964361667633 expected: 43
predicted: 107.87801241874695 expected: 59 predicted: 30.40837675333023 expected: 59
predicted: 96.38490444421768 expected: 60 predicted: 27.781964361667633 expected: 60
predicted: 110.60120612382889 expected: 78 predicted: 31.24549649655819 expected: 78
predicted: 288.4603080749512 expected: 263 predicted: 231.2072286605835 expected: 263
predicted: 367.3838310241699 expected: 400 predicted: 318.1358331441879 expected: 400
predicted: 1361.890419960022 expected: 1256 predicted: 1451.7506175041199 expected: 1256
predicted: 96.38490444421768 expected: 23 predicted: 27.781964361667633 expected: 23
predicted: 1361.890419960022 expected: 3345 predicted: 1451.7506175041199 expected: 3345
predicted: 118.90196335315704 expected: 98 predicted: 35.02500361204147 expected: 98
predicted: 555.0855638980865 expected: 238 predicted: 530.2856295108795 expected: 238
predicted: 127.52714788913727 expected: 69 predicted: 39.78039000928402 expected: 69
predicted: 397.6092493534088 expected: 170 predicted: 351.91593730449677 expected: 170
predicted: 72.37854194641113 expected: 31 predicted: 26.79070645570755 expected: 31
predicted: 133.36021208763123 expected: 102 predicted: 43.6776317358017 expected: 102
predicted: 1361.890419960022 expected: 1070 predicted: 1451.7506175041199 expected: 1070
predicted: 189.24707919359207 expected: 96 predicted: 115.7426495552063 expected: 96
predicted: 470.07955527305603 expected: 387 predicted: 433.7032353878021 expected: 387
predicted: 84.67825222015381 expected: 25 predicted: 27.035397246479988 expected: 25
predicted: 456.74648118019104 expected: 574 predicted: 418.5240786075592 expected: 574
predicted: 403.0836160182953 expected: 165 predicted: 357.96860003471375 expected: 165
predicted: 438.0862367153168 expected: 765 predicted: 397.3030471801758 expected: 765
predicted: 504.74084401130676 expected: 599 predicted: 473.10275983810425 expected: 599
predicted: 488.74388575553894 expected: 906 predicted: 454.97389698028564 expected: 906
predicted: 116.05787086486816 expected: 71 predicted: 33.45454025268555 expected: 71
predicted: 448.74924778938293 expected: 433 predicted: 409.42135322093964 expected: 433
predicted: 448.74924778938293 expected: 152 predicted: 409.42135322093964 expected: 152
predicted: 148.1169518828392 expected: 116 predicted: 60.30296468734741 expected: 116
predicted: 54.679246604442596 expected: 19 predicted: 26.76018589735031 expected: 19
predicted: 52.505416721105576 expected: 24 predicted: 26.76018589735031 expected: 24
predicted: 133.36021208763123 expected: 97 predicted: 43.6776317358017 expected: 97
predicted: 148.1169518828392 expected: 49 predicted: 60.30296468734741 expected: 49
predicted: 555.0855638980865 expected: 291 predicted: 530.2856295108795 expected: 291
predicted: 1361.890419960022 expected: 2816 predicted: 1451.7506175041199 expected: 2816
predicted: 397.6092493534088 expected: 152 predicted: 351.91593730449677 expected: 152
predicted: 504.74084401130676 expected: 1033 predicted: 473.10275983810425 expected: 1033
predicted: 488.74388575553894 expected: 740 predicted: 454.97389698028564 expected: 740
predicted: 105.04015484452248 expected: 32 predicted: 29.60762630403042 expected: 32
predicted: 136.28357082605362 expected: 74 predicted: 46.188458412885666 expected: 74
predicted: 555.0855638980865 expected: 453 predicted: 530.2856295108795 expected: 453
predicted: 397.6092493534088 expected: 219 predicted: 351.91593730449677 expected: 219
predicted: 177.70988458395004 expected: 82 predicted: 100.77534905076027 expected: 82
predicted: 194.98967796564102 expected: 72 predicted: 123.19417536258698 expected: 72
predicted: 93.51017928123474 expected: 109 predicted: 27.514323979616165 expected: 109
predicted: 440.75201439857483 expected: 567 predicted: 400.330885887146 expected: 567
predicted: 325.45894837379456 expected: 389 predicted: 271.7156335115433 expected: 389
predicted: 105.04015484452248 expected: 70 predicted: 29.60762630403042 expected: 70
predicted: 1361.890419960022 expected: 987 predicted: 1451.7506175041199 expected: 987
predicted: 1361.890419960022 expected: 1812 predicted: 1451.7506175041199 expected: 1812
predicted: 507.3979513645172 expected: 169 predicted: 476.11863946914673 expected: 169
predicted: 291.30746507644653 expected: 270 predicted: 234.37723088264465 expected: 270
predicted: 68.95200508832932 expected: 33 predicted: 26.770161136984825 expected: 33
predicted: 162.86742562055588 expected: 75 predicted: 81.62594100832939 expected: 75
predicted: 1361.890419960022 expected: 1424 predicted: 1451.7506175041199 expected: 1424
predicted: 54.679246604442596 expected: 39 predicted: 26.76018589735031 expected: 39
predicted: 68.95200508832932 expected: 49 predicted: 26.770161136984825 expected: 49
predicted: 72.37854194641113 expected: 141 predicted: 26.79070645570755 expected: 141
predicted: 59.85786905884743 expected: 24 predicted: 26.76018589735031 expected: 24
predicted: 177.70988458395004 expected: 91 predicted: 100.77534905076027 expected: 91
predicted: 250.9964098930359 expected: 101 predicted: 189.9326456785202 expected: 101
predicted: 523.3227066993713 expected: 401 predicted: 494.2209930419922 expected: 401
predicted: 523.3227066993713 expected: 570 predicted: 494.2209930419922 expected: 570
predicted: 180.6396962404251 expected: 106 predicted: 104.52815690636635 expected: 106
predicted: 62.63836666941643 expected: 43 predicted: 26.76077450811863 expected: 43
predicted: 555.0855638980865 expected: 439 predicted: 530.2856295108795 expected: 439
predicted: 1237.264790058136 expected: 1220 predicted: 1308.27658700943 expected: 1220
predicted: 96.38490444421768 expected: 82 predicted: 27.781964361667633 expected: 82
predicted: 46.82571832835674 expected: 5 predicted: 26.76018589735031 expected: 5
predicted: 507.3979513645172 expected: 314 predicted: 476.11863946914673 expected: 314
predicted: 383.88376808166504 expected: 180 predicted: 336.6213505268097 expected: 180
predicted: 99.27988529205322 expected: 88 predicted: 28.17588511109352 expected: 88
predicted: 1361.890419960022 expected: 1642 predicted: 1451.7506175041199 expected: 1642
predicted: 440.75201439857483 expected: 417 predicted: 400.330885887146 expected: 417
predicted: 311.22565484046936 expected: 346 predicted: 256.2422585487366 expected: 346
predicted: 50.43718174099922 expected: 10 predicted: 26.76018589735031 expected: 10
predicted: 189.24707919359207 expected: 93 predicted: 115.7426495552063 expected: 93
predicted: 72.37854194641113 expected: 26 predicted: 26.79070645570755 expected: 26
predicted: 142.19571441411972 expected: 41 predicted: 52.00283966958523 expected: 41
predicted: 1361.890419960022 expected: 505 predicted: 1451.7506175041199 expected: 505
predicted: 46.82571832835674 expected: 11 predicted: 26.76018589735031 expected: 11
predicted: 1361.890419960022 expected: 929 predicted: 1451.7506175041199 expected: 929
predicted: 403.0836160182953 expected: 877 predicted: 357.96860003471375 expected: 877
predicted: 127.52714788913727 expected: 370 predicted: 39.78039000928402 expected: 370
predicted: 48.50093571841717 expected: 28 predicted: 26.76018589735031 expected: 28
predicted: 1361.890419960022 expected: 1085 predicted: 1451.7506175041199 expected: 1085
predicted: 1237.264790058136 expected: 654 predicted: 1308.27658700943 expected: 654
predicted: 99.27988529205322 expected: 59 predicted: 28.17588511109352 expected: 59
predicted: 212.5007175207138 expected: 259 predicted: 144.74467933177948 expected: 259
predicted: 370.1334218978882 expected: 165 predicted: 321.2292972803116 expected: 165
predicted: 46.82571832835674 expected: 1 predicted: 26.76018589735031 expected: 1
predicted: 59.85786905884743 expected: 26 predicted: 26.76018589735031 expected: 26
predicted: 177.70988458395004 expected: 399 predicted: 100.77534905076027 expected: 399
predicted: 438.08618688583374 expected: 155 predicted: 397.3030720949173 expected: 155
predicted: 206.62610799074173 expected: 158 predicted: 137.58719730377197 expected: 158
predicted: 470.07955527305603 expected: 782 predicted: 433.7032353878021 expected: 782
predicted: 209.55610650777817 expected: 376 predicted: 141.16236305236816 expected: 376
predicted: 46.82571832835674 expected: 1 predicted: 26.76018589735031 expected: 1
predicted: 253.949853181839 expected: 116 predicted: 193.0980635881424 expected: 116
predicted: 311.22565484046936 expected: 628 predicted: 256.2422585487366 expected: 628
predicted: 1361.890419960022 expected: 1897 predicted: 1451.7506175041199 expected: 1897
predicted: 156.95644056797028 expected: 76 predicted: 73.2502589225769 expected: 76
predicted: 589.4715447425842 expected: 450 predicted: 569.2618026733398 expected: 450
predicted: 291.30746507644653 expected: 272 predicted: 234.37723088264465 expected: 272
predicted: 397.6092493534088 expected: 149 predicted: 351.91593730449677 expected: 149
predicted: 1237.264790058136 expected: 1069 predicted: 1308.27658700943 expected: 1069
predicted: 239.15587830543518 expected: 286 predicted: 176.44806504249573 expected: 286
predicted: 206.62613290548325 expected: 526 predicted: 137.58719730377197 expected: 526
predicted: 90.6400882601738 expected: 29 predicted: 27.31346444785595 expected: 29
predicted: 311.22565484046936 expected: 373 predicted: 256.2422585487366 expected: 373
predicted: 177.70988458395004 expected: 481 predicted: 100.77534905076027 expected: 481
predicted: 168.88216811418533 expected: 74 predicted: 89.5334190428257 expected: 74
predicted: 84.67825222015381 expected: 54 predicted: 27.035397246479988 expected: 54
predicted: 183.54676073789597 expected: 102 predicted: 108.27169024944305 expected: 102
predicted: 46.82571832835674 expected: 22 predicted: 26.76018589735031 expected: 22
predicted: 1361.890419960022 expected: 1360 predicted: 1451.7506175041199 expected: 1360
predicted: 470.07955527305603 expected: 324 predicted: 433.7032353878021 expected: 324
predicted: 438.0862367153168 expected: 973 predicted: 397.3030471801758 expected: 973
predicted: 440.75201439857483 expected: 407 predicted: 400.330885887146 expected: 407
predicted: 248.04540824890137 expected: 317 predicted: 186.616468667984 expected: 317
predicted: 54.679246604442596 expected: 76 predicted: 26.76018589735031 expected: 76
predicted: 456.74648118019104 expected: 688 predicted: 418.5240786075592 expected: 688
predicted: 81.7299475967884 expected: 44 predicted: 26.944442868232727 expected: 44
predicted: 367.3838310241699 expected: 239 predicted: 318.1358331441879 expected: 239
predicted: 470.07955527305603 expected: 344 predicted: 433.7032353878021 expected: 344
predicted: 456.74648118019104 expected: 688 predicted: 418.5240786075592 expected: 688
predicted: 397.60929918289185 expected: 442 predicted: 351.91593730449677 expected: 442
predicted: 154.0077684521675 expected: 157 predicted: 68.93387961387634 expected: 157
predicted: 1361.890419960022 expected: 1193 predicted: 1451.7506175041199 expected: 1193
predicted: 113.2706213593483 expected: 102 predicted: 32.178858771920204 expected: 102
predicted: 438.0862367153168 expected: 768 predicted: 397.3030471801758 expected: 768
predicted: 102.17511528730392 expected: 42 predicted: 28.805081993341446 expected: 42
predicted: 325.45894837379456 expected: 265 predicted: 271.7156335115433 expected: 265
predicted: 90.6400882601738 expected: 15 predicted: 27.31346444785595 expected: 15
predicted: 96.38490444421768 expected: 44 predicted: 27.781964361667633 expected: 44
predicted: 46.82571832835674 expected: 1 predicted: 26.76018589735031 expected: 1
predicted: 397.6092493534088 expected: 216 predicted: 351.91593730449677 expected: 216
predicted: 72.37854194641113 expected: 20 predicted: 26.79070645570755 expected: 20
predicted: 555.0855638980865 expected: 308 predicted: 530.2856295108795 expected: 308
predicted: 78.7634365260601 expected: 29 predicted: 26.881321370601654 expected: 29
predicted: 118.90196335315704 expected: 208 predicted: 35.02500361204147 expected: 208
predicted: 197.87735879421234 expected: 99 predicted: 126.88576769828796 expected: 99
predicted: 113.2706213593483 expected: 48 predicted: 32.178858771920204 expected: 48
predicted: 54.679246604442596 expected: 15 predicted: 26.76018589735031 expected: 15
predicted: 440.75201439857483 expected: 630 predicted: 400.330885887146 expected: 630
predicted: 325.45894837379456 expected: 333 predicted: 271.7156335115433 expected: 333
predicted: 75.7197956442833 expected: 55 predicted: 26.826289378106594 expected: 55
predicted: 99.27988529205322 expected: 52 predicted: 28.17588511109352 expected: 52
predicted: 107.87801241874695 expected: 27 predicted: 30.40837675333023 expected: 27
predicted: 81.7299475967884 expected: 16 predicted: 26.944442868232727 expected: 16
predicted: 555.0855638980865 expected: 472 predicted: 530.2856295108795 expected: 472
predicted: 397.6092493534088 expected: 162 predicted: 351.91593730449677 expected: 162
predicted: 1361.890419960022 expected: 1054 predicted: 1451.7506175041199 expected: 1054
predicted: 183.54676073789597 expected: 223 predicted: 108.27169024944305 expected: 223
predicted: 59.85786905884743 expected: 22 predicted: 26.76018589735031 expected: 22
predicted: 1361.890419960022 expected: 3345 predicted: 1451.7506175041199 expected: 3345
predicted: 156.95644056797028 expected: 71 predicted: 73.2502589225769 expected: 71
predicted: 507.3979015350342 expected: 862 predicted: 476.11863946914673 expected: 862
predicted: 93.51017928123474 expected: 26 predicted: 27.514320865273476 expected: 26
predicted: 1237.264790058136 expected: 624 predicted: 1308.27658700943 expected: 624
predicted: 102.17511528730392 expected: 24 predicted: 28.805081993341446 expected: 24
predicted: 72.37854194641113 expected: 115 predicted: 26.79070645570755 expected: 115
predicted: 1361.890419960022 expected: 3131 predicted: 1451.7506175041199 expected: 3131
predicted: 107.87801241874695 expected: 27 predicted: 30.40837675333023 expected: 27
predicted: 1361.890419960022 expected: 1116 predicted: 1451.7506175041199 expected: 1116
predicted: 291.30746507644653 expected: 501 predicted: 234.37723088264465 expected: 501
predicted: 1237.264790058136 expected: 1380 predicted: 1308.27658700943 expected: 1380
predicted: 470.07955527305603 expected: 538 predicted: 433.7032353878021 expected: 538
predicted: 81.7299475967884 expected: 77 predicted: 26.944442868232727 expected: 77
predicted: 308.3802418708801 expected: 270 predicted: 253.14989066123962 expected: 270
predicted: 1237.264790058136 expected: 618 predicted: 1308.27658700943 expected: 618
predicted: 555.0855638980865 expected: 335 predicted: 530.2856295108795 expected: 335
predicted: 440.75201439857483 expected: 550 predicted: 400.330885887146 expected: 550
predicted: 168.88216811418533 expected: 169 predicted: 89.5334190428257 expected: 169
predicted: 440.75201439857483 expected: 653 predicted: 400.330885887146 expected: 653
predicted: 84.67825222015381 expected: 21 predicted: 27.035397246479988 expected: 21
predicted: 250.9964098930359 expected: 225 predicted: 189.9326456785202 expected: 225
predicted: 1361.890419960022 expected: 2192 predicted: 1451.7506175041199 expected: 2192
predicted: 403.0836160182953 expected: 213 predicted: 357.96860003471375 expected: 213
predicted: 448.74924778938293 expected: 695 predicted: 409.42135322093964 expected: 695
predicted: 65.65746653079987 expected: 23 predicted: 26.761529736220837 expected: 23
predicted: 154.0077684521675 expected: 148 predicted: 68.93387961387634 expected: 148
predicted: 194.98967796564102 expected: 57 predicted: 123.19417536258698 expected: 57
predicted: 93.51017928123474 expected: 42 predicted: 27.514323979616165 expected: 42
predicted: 194.98967796564102 expected: 195 predicted: 123.19417536258698 expected: 195
predicted: 209.55610650777817 expected: 172 predicted: 141.16236305236816 expected: 172
predicted: 523.3226568698883 expected: 220 predicted: 494.2209930419922 expected: 220
predicted: 230.25438928604126 expected: 112 predicted: 166.22088754177094 expected: 112
predicted: 75.7197956442833 expected: 14 predicted: 26.826289378106594 expected: 14
predicted: 397.60929918289185 expected: 314 predicted: 351.91593730449677 expected: 314
predicted: 107.87801241874695 expected: 47 predicted: 30.40837363898754 expected: 47
predicted: 488.74388575553894 expected: 836 predicted: 454.97389698028564 expected: 836
predicted: 448.74924778938293 expected: 375 predicted: 409.42135322093964 expected: 375
predicted: 440.75201439857483 expected: 501 predicted: 400.330885887146 expected: 501
predicted: 405.8219952583313 expected: 392 predicted: 360.99444556236267 expected: 392
predicted: 448.74924778938293 expected: 824 predicted: 409.42135322093964 expected: 824
predicted: 145.16070568561554 expected: 220 predicted: 56.03865718841553 expected: 220
predicted: 50.43718174099922 expected: 3 predicted: 26.76018589735031 expected: 3
predicted: 282.75129437446594 expected: 307 predicted: 224.82746028900146 expected: 307
predicted: 48.50093571841717 expected: 18 predicted: 26.76018589735031 expected: 18
predicted: 105.04015484452248 expected: 93 predicted: 29.60762630403042 expected: 93
predicted: 367.3838310241699 expected: 180 predicted: 318.1358331441879 expected: 180
predicted: 50.43718174099922 expected: 3 predicted: 26.76018589735031 expected: 3
predicted: 555.0855638980865 expected: 297 predicted: 530.2856295108795 expected: 297
predicted: 523.3226568698883 expected: 576 predicted: 494.2209930419922 expected: 576
predicted: 555.0855638980865 expected: 314 predicted: 530.2856295108795 expected: 314
predicted: 253.949853181839 expected: 139 predicted: 193.0980635881424 expected: 139
predicted: 105.04015484452248 expected: 105 predicted: 29.60762630403042 expected: 105
predicted: 367.3838310241699 expected: 231 predicted: 318.1358331441879 expected: 231
predicted: 75.7197956442833 expected: 12 predicted: 26.826289378106594 expected: 12
predicted: 1237.264790058136 expected: 1026 predicted: 1308.27658700943 expected: 1026
predicted: 367.3838310241699 expected: 304 predicted: 318.1358331441879 expected: 304
predicted: 46.82571832835674 expected: 3 predicted: 26.76018589735031 expected: 3
predicted: 403.0836160182953 expected: 335 predicted: 357.96860003471375 expected: 335
predicted: 145.16070568561554 expected: 110 predicted: 56.03865718841553 expected: 110
predicted: 72.37854194641113 expected: 43 predicted: 26.79070645570755 expected: 43
predicted: 133.36021208763123 expected: 113 predicted: 43.6776317358017 expected: 113
predicted: 440.75201439857483 expected: 487 predicted: 400.330885887146 expected: 487
predicted: 403.0836160182953 expected: 541 predicted: 357.96860003471375 expected: 541
predicted: 271.3142819404602 expected: 114 predicted: 212.1372114419937 expected: 114
predicted: 75.7197956442833 expected: 101 predicted: 26.826289378106594 expected: 101
predicted: 242.13134622573853 expected: 251 predicted: 179.86350238323212 expected: 251
predicted: 1361.890519618988 expected: 1358 predicted: 1451.7506175041199 expected: 1358
predicted: 405.8219952583313 expected: 1031 predicted: 360.99444556236267 expected: 1031
predicted: 1361.890419960022 expected: 1788 predicted: 1451.7506175041199 expected: 1788
predicted: 248.04540824890137 expected: 137 predicted: 186.616468667984 expected: 137
predicted: 54.679246604442596 expected: 29 predicted: 26.76018589735031 expected: 29
predicted: 107.87801241874695 expected: 68 predicted: 30.40837675333023 expected: 68
predicted: 507.3979513645172 expected: 442 predicted: 476.11863946914673 expected: 442
predicted: 81.7299475967884 expected: 24 predicted: 26.944442868232727 expected: 24
predicted: 488.74388575553894 expected: 1129 predicted: 454.97389698028564 expected: 1129
predicted: 57.13920360803604 expected: 35 predicted: 26.76018589735031 expected: 35
predicted: 116.05787086486816 expected: 181 predicted: 33.45454025268555 expected: 181
predicted: 555.0855638980865 expected: 894 predicted: 530.2856295108795 expected: 894
predicted: 57.13920360803604 expected: 49 predicted: 26.76018589735031 expected: 49
predicted: 154.0077684521675 expected: 170 predicted: 68.93387961387634 expected: 170
predicted: 194.98967796564102 expected: 196 predicted: 123.19417536258698 expected: 196
predicted: 1361.890419960022 expected: 3345 predicted: 1451.7506175041199 expected: 3345
predicted: 107.87801241874695 expected: 24 predicted: 30.40837675333023 expected: 24
predicted: 470.07955527305603 expected: 629 predicted: 433.7032353878021 expected: 629
predicted: 555.0855638980865 expected: 290 predicted: 530.2856295108795 expected: 290
predicted: 470.07955527305603 expected: 342 predicted: 433.7032353878021 expected: 342
predicted: 183.54676073789597 expected: 177 predicted: 108.27169024944305 expected: 177
predicted: 81.7299475967884 expected: 57 predicted: 26.944442868232727 expected: 57
predicted: 1237.264790058136 expected: 707 predicted: 1308.27658700943 expected: 707
predicted: 285.6049790382385 expected: 289 predicted: 228.01589941978455 expected: 289
predicted: 93.51017928123474 expected: 78 predicted: 27.514323979616165 expected: 78
predicted: 403.0836160182953 expected: 530 predicted: 357.96860003471375 expected: 530
predicted: 242.13134622573853 expected: 276 predicted: 179.86350238323212 expected: 276
predicted: 440.75201439857483 expected: 389 predicted: 400.330885887146 expected: 389
predicted: 96.38490444421768 expected: 173 predicted: 27.781964361667633 expected: 173
predicted: 555.0855638980865 expected: 717 predicted: 530.2856295108795 expected: 717
predicted: 507.3979513645172 expected: 707 predicted: 476.11863946914673 expected: 707
predicted: 555.0855638980865 expected: 440 predicted: 530.2856295108795 expected: 440
predicted: 65.65746653079987 expected: 36 predicted: 26.761529736220837 expected: 36
predicted: 118.90196335315704 expected: 115 predicted: 35.02500361204147 expected: 115
predicted: 177.70988458395004 expected: 437 predicted: 100.77534905076027 expected: 437
predicted: 107.87801241874695 expected: 75 predicted: 30.40837675333023 expected: 75
predicted: 1361.890419960022 expected: 611 predicted: 1451.7506175041199 expected: 611
predicted: 84.67825222015381 expected: 17 predicted: 27.035397246479988 expected: 17
predicted: 59.85786905884743 expected: 52 predicted: 26.76018589735031 expected: 52
predicted: 507.3979513645172 expected: 849 predicted: 476.11863946914673 expected: 849
predicted: 438.0862367153168 expected: 230 predicted: 397.3030471801758 expected: 230
predicted: 403.0836160182953 expected: 537 predicted: 357.96860003471375 expected: 537
predicted: 1361.890419960022 expected: 1645 predicted: 1451.7506175041199 expected: 1645
predicted: 403.0836160182953 expected: 221 predicted: 357.96860003471375 expected: 221
predicted: 180.6396962404251 expected: 167 predicted: 104.52815690636635 expected: 167
predicted: 438.0862367153168 expected: 274 predicted: 397.3030471801758 expected: 274
predicted: 206.62613290548325 expected: 141 predicted: 137.58719730377197 expected: 141
predicted: 555.0855638980865 expected: 414 predicted: 530.2856295108795 expected: 414
predicted: 59.85786905884743 expected: 32 predicted: 26.76018589735031 expected: 32
predicted: 403.0836160182953 expected: 203 predicted: 357.96860003471375 expected: 203
predicted: 54.679246604442596 expected: 18 predicted: 26.76018589735031 expected: 18
predicted: 242.13134622573853 expected: 212 predicted: 179.86350238323212 expected: 212
predicted: 93.51017928123474 expected: 29 predicted: 27.514323979616165 expected: 29
predicted: 1361.890419960022 expected: 1665 predicted: 1451.7506175041199 expected: 1665
predicted: 397.6092493534088 expected: 192 predicted: 351.91593730449677 expected: 192
predicted: 81.7299475967884 expected: 24 predicted: 26.944442868232727 expected: 24
predicted: 248.04540824890137 expected: 175 predicted: 186.616468667984 expected: 175
predicted: 1361.890419960022 expected: 1329 predicted: 1451.7506175041199 expected: 1329
predicted: 523.3226568698883 expected: 261 predicted: 494.2209930419922 expected: 261
predicted: 403.0836160182953 expected: 712 predicted: 357.96860003471375 expected: 712
predicted: 148.1169518828392 expected: 52 predicted: 60.30296468734741 expected: 52
predicted: 397.6092493534088 expected: 157 predicted: 351.91593730449677 expected: 157
predicted: 277.0447223186493 expected: 285 predicted: 218.47828722000122 expected: 285
predicted: 361.8580901622772 expected: 405 predicted: 311.94648814201355 expected: 405
predicted: 367.3838310241699 expected: 452 predicted: 318.1358082294464 expected: 452
predicted: 1361.890419960022 expected: 1267 predicted: 1451.7506175041199 expected: 1267
predicted: 59.85786905884743 expected: 50 predicted: 26.76018589735031 expected: 50
predicted: 162.86742562055588 expected: 150 predicted: 81.62594100832939 expected: 150
predicted: 239.15587830543518 expected: 255 predicted: 176.44806504249573 expected: 255
predicted: 68.95200508832932 expected: 18 predicted: 26.770161136984825 expected: 18
predicted: 46.82571832835674 expected: 4 predicted: 26.76018589735031 expected: 4
predicted: 467.4128806591034 expected: 437 predicted: 430.66587924957275 expected: 437
predicted: 59.85786905884743 expected: 24 predicted: 26.76018589735031 expected: 24
predicted: 81.7299475967884 expected: 71 predicted: 26.944442868232727 expected: 71
predicted: 555.0855638980865 expected: 532 predicted: 530.2856295108795 expected: 532
predicted: 507.3979513645172 expected: 729 predicted: 476.11863946914673 expected: 729
predicted: 75.7197956442833 expected: 35 predicted: 26.826289378106594 expected: 35
predicted: 488.74388575553894 expected: 368 predicted: 454.97389698028564 expected: 368
predicted: 46.82571832835674 expected: 12 predicted: 26.76018589735031 expected: 12
predicted: 1361.890419960022 expected: 2034 predicted: 1451.7506175041199 expected: 2034
predicted: 470.07955527305603 expected: 391 predicted: 433.7032353878021 expected: 391
predicted: 403.0836160182953 expected: 560 predicted: 357.96860003471375 expected: 560
predicted: 555.0855638980865 expected: 1011 predicted: 530.2856295108795 expected: 1011
predicted: 488.74388575553894 expected: 600 predicted: 454.97389698028564 expected: 600
predicted: 248.04540824890137 expected: 167 predicted: 186.616468667984 expected: 167
predicted: 59.85786905884743 expected: 34 predicted: 26.76018589735031 expected: 34
predicted: 84.67825222015381 expected: 47 predicted: 27.035397246479988 expected: 47
predicted: 1361.890419960022 expected: 1148 predicted: 1451.7506175041199 expected: 1148
predicted: 325.45894837379456 expected: 326 predicted: 271.7156335115433 expected: 326
predicted: 1361.890419960022 expected: 876 predicted: 1451.7506175041199 expected: 876
predicted: 48.50093571841717 expected: 10 predicted: 26.76018589735031 expected: 10
predicted: 1361.890419960022 expected: 3345 predicted: 1451.7506175041199 expected: 3345
predicted: 448.74924778938293 expected: 993 predicted: 409.42135322093964 expected: 993
predicted: 127.52714788913727 expected: 49 predicted: 39.78039000928402 expected: 49
predicted: 186.39137643575668 expected: 230 predicted: 112.0236759185791 expected: 230
predicted: 470.07955527305603 expected: 679 predicted: 433.7032353878021 expected: 679
predicted: 1361.890519618988 expected: 2201 predicted: 1451.7506175041199 expected: 2201
predicted: 209.55610650777817 expected: 202 predicted: 141.16236305236816 expected: 202
predicted: 589.4715447425842 expected: 663 predicted: 569.2618026733398 expected: 663
predicted: 145.16070568561554 expected: 79 predicted: 56.03865718841553 expected: 79
predicted: 359.0711271762848 expected: 214 predicted: 308.85175335407257 expected: 214
predicted: 448.74924778938293 expected: 829 predicted: 409.42135322093964 expected: 829
predicted: 107.87801241874695 expected: 149 predicted: 30.40837675333023 expected: 149
predicted: 403.0836160182953 expected: 729 predicted: 357.96860003471375 expected: 729
predicted: 96.38490444421768 expected: 19 predicted: 27.781964361667633 expected: 19
predicted: 288.4603080749512 expected: 173 predicted: 231.2072286605835 expected: 173
predicted: 438.0862367153168 expected: 240 predicted: 397.3030471801758 expected: 240
predicted: 162.86742562055588 expected: 89 predicted: 81.62594100832939 expected: 89
predicted: 75.7197956442833 expected: 49 predicted: 26.826289378106594 expected: 49
predicted: 440.75201439857483 expected: 228 predicted: 400.330885887146 expected: 228
predicted: 1361.890419960022 expected: 651 predicted: 1451.7506175041199 expected: 651
predicted: 62.63836666941643 expected: 15 predicted: 26.76077450811863 expected: 15
predicted: 133.36021208763123 expected: 61 predicted: 43.6776317358017 expected: 61
predicted: 90.6400882601738 expected: 84 predicted: 27.31346444785595 expected: 84
predicted: 75.7197956442833 expected: 36 predicted: 26.826289378106594 expected: 36
predicted: 154.0077684521675 expected: 101 predicted: 68.93387961387634 expected: 101
predicted: 345.143039226532 expected: 184 predicted: 293.37837839126587 expected: 184
predicted: 361.85813999176025 expected: 268 predicted: 311.94646322727203 expected: 268
predicted: 1361.890419960022 expected: 2910 predicted: 1451.7506175041199 expected: 2910
predicted: 90.6400882601738 expected: 106 predicted: 27.31346444785595 expected: 106
predicted: 325.45894837379456 expected: 433 predicted: 271.7156335115433 expected: 433
predicted: 1361.890419960022 expected: 1700 predicted: 1451.7506175041199 expected: 1700
predicted: 87.643430352211 expected: 41 predicted: 27.162359654903412 expected: 41
predicted: 46.82571832835674 expected: 1 predicted: 26.76018589735031 expected: 1
predicted: 440.75201439857483 expected: 520 predicted: 400.330885887146 expected: 520
predicted: 52.505413606762886 expected: 50 predicted: 26.76018589735031 expected: 50
predicted: 470.07955527305603 expected: 734 predicted: 433.7032353878021 expected: 734
predicted: 65.65746653079987 expected: 45 predicted: 26.761529736220837 expected: 45
predicted: 1361.890519618988 expected: 2837 predicted: 1451.7506175041199 expected: 2837
predicted: 90.6400882601738 expected: 23 predicted: 27.31346444785595 expected: 23
predicted: 168.88216811418533 expected: 145 predicted: 89.5334190428257 expected: 145
predicted: 555.0855638980865 expected: 185 predicted: 530.2856295108795 expected: 185
predicted: 57.13920360803604 expected: 42 predicted: 26.76018589735031 expected: 42
predicted: 268.44813990592957 expected: 410 predicted: 208.96947646141052 expected: 410
predicted: 1361.890419960022 expected: 1622 predicted: 1451.7506175041199 expected: 1622
predicted: 448.74924778938293 expected: 661 predicted: 409.42135322093964 expected: 661
predicted: 50.43718174099922 expected: 4 predicted: 26.76018589735031 expected: 4
predicted: 345.143039226532 expected: 369 predicted: 293.37837839126587 expected: 369
predicted: 308.3802418708801 expected: 221 predicted: 253.14989066123962 expected: 221
predicted: 345.143039226532 expected: 234 predicted: 293.37837839126587 expected: 234
predicted: 180.6396962404251 expected: 380 predicted: 104.52815690636635 expected: 380
predicted: 403.0836160182953 expected: 249 predicted: 357.96860003471375 expected: 249
predicted: 48.50093571841717 expected: 25 predicted: 26.76018589735031 expected: 25
predicted: 1361.890419960022 expected: 1876 predicted: 1451.7506175041199 expected: 1876
predicted: 308.3802418708801 expected: 241 predicted: 253.14989066123962 expected: 241
predicted: 259.779155254364 expected: 334 predicted: 199.41325294971466 expected: 334
predicted: 305.53477907180786 expected: 303 predicted: 250.05866885185242 expected: 303
predicted: 52.505413606762886 expected: 19 predicted: 26.76018589735031 expected: 19
predicted: 1361.890419960022 expected: 1248 predicted: 1451.7506175041199 expected: 1248
predicted: 177.70988458395004 expected: 501 predicted: 100.77534905076027 expected: 501
predicted: 470.07955527305603 expected: 328 predicted: 433.7032353878021 expected: 328
predicted: 311.22565484046936 expected: 406 predicted: 256.2422585487366 expected: 406
predicted: 206.62613290548325 expected: 141 predicted: 137.58719730377197 expected: 141
predicted: 177.70988458395004 expected: 408 predicted: 100.77534905076027 expected: 408
predicted: 46.82571832835674 expected: 4 predicted: 26.76018589735031 expected: 4
predicted: 1361.890419960022 expected: 3147 predicted: 1451.7506175041199 expected: 3147
predicted: 105.04015484452248 expected: 99 predicted: 29.60762630403042 expected: 99
predicted: 242.13134622573853 expected: 89 predicted: 179.86350238323212 expected: 89
predicted: 102.17511528730392 expected: 61 predicted: 28.805081993341446 expected: 61
predicted: 81.7299475967884 expected: 27 predicted: 26.944442868232727 expected: 27
predicted: 1361.890519618988 expected: 1088 predicted: 1451.7506175041199 expected: 1088
predicted: 105.0401486158371 expected: 105 predicted: 29.60762318968773 expected: 105
predicted: 165.85928744077682 expected: 173 predicted: 85.75156059861183 expected: 173
predicted: 1237.264790058136 expected: 1496 predicted: 1308.27658700943 expected: 1496
predicted: 555.0855638980865 expected: 866 predicted: 530.2856295108795 expected: 866
predicted: 523.3227066993713 expected: 399 predicted: 494.2210428714752 expected: 399
predicted: 305.53477907180786 expected: 317 predicted: 250.05866885185242 expected: 317

25
rmse.txt Normal file
View File

@ -0,0 +1,25 @@
109845.55756236914
104845.55756236914
109845.55756236914
109845.55756236914
104845.55756236914
19845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
109845.55756236914
114882.99377127373
129787.96004765884