mlflow
All checks were successful
s434766-evaluation/pipeline/head This commit looks good
s434766-training/pipeline/head This commit looks good

This commit is contained in:
s434766 2021-05-15 13:41:31 +02:00
parent 866186c16e
commit 5e4ac37a43
40 changed files with 180 additions and 0 deletions

11
MLproject Normal file
View File

@ -0,0 +1,11 @@
name: ium_s434766-mlflow
docker_env:
image: owczarczykp/ium_s434766:latest
entry_points:
main:
parameters:
num_epochs: {type: int, default: 10}
batch_size: {type: int, default: 16}
command: "python3 lab8-mlflow.py -r {batch_size} {num_epochs}"

73
lab8-mlflow.py Normal file
View File

@ -0,0 +1,73 @@
import torch
import sys
import mlflow
import torch.nn.functional as F
from torch import nn
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error
import numpy as np
import pandas as pd
np.set_printoptions(suppress=False)
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
with mlflow.start_run():
data_train = pd.read_csv("data_train.csv")
data_test = pd.read_csv("data_test.csv")
data_val = pd.read_csv("data_val.csv")
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
x_train = data_train[FEATURES].astype(np.float32)
y_train = data_train['stroke'].astype(np.float32)
x_test = data_test[FEATURES].astype(np.float32)
y_test = data_test['stroke'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
batch_size = int(sys.argv[1]) if len(sys.argv) > 1 else 16
num_epochs = int(sys.argv[2]) if len(sys.argv) > 2 else 5
learning_rate = 0.001
input_dim = 6
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
y_pred = model(fTest)
# print("predicted Y value: ", y_pred.data)
torch.save(model.state_dict(), 'stroke.pth')
rmse = mean_squared_error(tTest, y_pred.detach().numpy())
mlflow.log_metric("rmse", rmse)
mlflow.log_param("Last loss", loss.item())
mlflow.log_param("epochs", num_epochs)
mlflow.log_param("batch size", batch_size)

View File

@ -0,0 +1,15 @@
artifact_uri: file:///home/przemek/ium_434766/mlruns/0/0a44577d5489416ba432f0004c88ec5b/artifacts
end_time: 1621078832992
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
name: ''
run_id: 0a44577d5489416ba432f0004c88ec5b
run_uuid: 0a44577d5489416ba432f0004c88ec5b
source_name: ''
source_type: 4
source_version: ''
start_time: 1621078832964
status: 3
tags: []
user_id: przemek

View File

@ -0,0 +1 @@
1621078832990 0.8788978 0

View File

@ -0,0 +1 @@
7.942412376403809

View File

@ -0,0 +1 @@
16

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
866186c16e42c72886f5529feb1de754cdb93d54

View File

@ -0,0 +1 @@
lab8-mlflow.py

View File

@ -0,0 +1 @@
LOCAL

View File

@ -0,0 +1 @@
przemek

View File

@ -0,0 +1,15 @@
artifact_uri: file:///home/przemek/ium_434766/mlruns/0/8e73be609cf045c9a792e9712a5482d6/artifacts
end_time: 1621078794818
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
name: ''
run_id: 8e73be609cf045c9a792e9712a5482d6
run_uuid: 8e73be609cf045c9a792e9712a5482d6
source_name: ''
source_type: 4
source_version: ''
start_time: 1621078794791
status: 3
tags: []
user_id: przemek

View File

@ -0,0 +1 @@
1621078794815 0.87343794 0

View File

@ -0,0 +1 @@
11.738595962524414

View File

@ -0,0 +1 @@
16

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
866186c16e42c72886f5529feb1de754cdb93d54

View File

@ -0,0 +1 @@
lab8-mlflow.py

View File

@ -0,0 +1 @@
LOCAL

View File

@ -0,0 +1 @@
przemek

View File

@ -0,0 +1,15 @@
artifact_uri: file:///home/przemek/ium_434766/mlruns/0/a5a700d065624643b0e7e7addd6ec479/artifacts
end_time: 1621078798316
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
name: ''
run_id: a5a700d065624643b0e7e7addd6ec479
run_uuid: a5a700d065624643b0e7e7addd6ec479
source_name: ''
source_type: 4
source_version: ''
start_time: 1621078798285
status: 3
tags: []
user_id: przemek

View File

@ -0,0 +1 @@
1621078798313 0.09201313 0

View File

@ -0,0 +1 @@
0.3280356824398041

View File

@ -0,0 +1 @@
16

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
866186c16e42c72886f5529feb1de754cdb93d54

View File

@ -0,0 +1 @@
lab8-mlflow.py

View File

@ -0,0 +1 @@
LOCAL

View File

@ -0,0 +1 @@
przemek

View File

@ -0,0 +1,15 @@
artifact_uri: file:///home/przemek/ium_434766/mlruns/0/bb1356a5d8fd4a048612acedc090167f/artifacts
end_time: 1621078791156
entry_point_name: ''
experiment_id: '0'
lifecycle_stage: active
name: ''
run_id: bb1356a5d8fd4a048612acedc090167f
run_uuid: bb1356a5d8fd4a048612acedc090167f
source_name: ''
source_type: 4
source_version: ''
start_time: 1621078791105
status: 3
tags: []
user_id: przemek

View File

@ -0,0 +1 @@
1621078791153 0.09705861 0

View File

@ -0,0 +1 @@
0.3212756812572479

View File

@ -0,0 +1 @@
16

View File

@ -0,0 +1 @@
5

View File

@ -0,0 +1 @@
866186c16e42c72886f5529feb1de754cdb93d54

View File

@ -0,0 +1 @@
lab8-mlflow.py

View File

@ -0,0 +1 @@
LOCAL

View File

@ -0,0 +1 @@
przemek

4
mlruns/0/meta.yaml Normal file
View File

@ -0,0 +1,4 @@
artifact_location: file:///home/przemek/ium_434766/mlruns/0
experiment_id: '0'
lifecycle_stage: active
name: Default

Binary file not shown.