sacred my runs
All checks were successful
s434766-evaluation/pipeline/head This commit looks good
s434766-training/pipeline/head This commit looks good

This commit is contained in:
s434766 2021-05-16 18:02:36 +02:00
parent 5e4ac37a43
commit d4912c0bdc
21 changed files with 478 additions and 1 deletions

View File

@ -0,0 +1,6 @@
{
"batch_size": 16,
"learning_rate": 0.001,
"num_epochs": 15,
"seed": 397973104
}

View File

@ -0,0 +1,4 @@
INFO - ium_s434766 - Running command 'my_main'
INFO - ium_s434766 - Started run with ID "1"
INFO - train - Batch size = 16 Epochs = 15
INFO - train - Last loss = 0.32308459281921387

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1,67 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "/home/przemek/ium_434766",
"dependencies": [
"numpy==1.20.1",
"pandas==1.2.4",
"sacred==0.8.2",
"scikit-learn==0.24.1",
"torch==1.8.1"
],
"mainfile": "sacred-pytorch1.py",
"name": "ium_s434766",
"repositories": [],
"sources": [
[
"sacred-pytorch1.py",
"_sources/sacred-pytorch1_37f3ae3f09d3a85faa1cb43617a6d59e.py"
]
]
},
"heartbeat": "2021-05-16T16:01:49.590955",
"host": {
"ENV": {},
"cpu": "Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz",
"hostname": "OwczarPC",
"os": [
"Linux",
"Linux-5.4.72-microsoft-standard-WSL2-x86_64-with-glibc2.29"
],
"python_version": "3.8.5"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-16T16:01:49.507065",
"status": "COMPLETED",
"stop_time": "2021-05-16T16:01:49.589890"
}

View File

@ -0,0 +1,6 @@
{
"batch_size": 16,
"learning_rate": 0.001,
"num_epochs": 15,
"seed": 9915532
}

View File

@ -0,0 +1,5 @@
INFO - ium_s434766 - Running command 'my_main'
INFO - ium_s434766 - Started run with ID "2"
INFO - train - Batch size = 16 Epochs = 15
INFO - train - Last loss = 0.29651644825935364
INFO - ium_s434766 - Completed after 0:00:00

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1,63 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "/home/przemek/ium_434766",
"dependencies": [
"numpy==1.20.1",
"pandas==1.2.4",
"sacred==0.8.2",
"scikit-learn==0.24.1",
"torch==1.8.1"
],
"mainfile": "sacred-pytorch1.py",
"name": "ium_s434766",
"repositories": [],
"sources": [
[
"sacred-pytorch1.py",
"_sources/sacred-pytorch1_37f3ae3f09d3a85faa1cb43617a6d59e.py"
]
]
},
"heartbeat": "2021-05-16T16:01:49.672141",
"host": {
"ENV": {},
"cpu": "Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz",
"hostname": "OwczarPC",
"os": [
"Linux",
"Linux-5.4.72-microsoft-standard-WSL2-x86_64-with-glibc2.29"
],
"python_version": "3.8.5"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-16T16:01:49.643954",
"status": "COMPLETED",
"stop_time": "2021-05-16T16:01:49.670359"
}

View File

@ -0,0 +1,6 @@
{
"batch_size": 16,
"learning_rate": 0.001,
"num_epochs": 15,
"seed": 400864859
}

View File

@ -0,0 +1,4 @@
INFO - ium_s434766 - Running command 'my_main'
INFO - ium_s434766 - Started run with ID "3"
INFO - train - Batch size = 16 Epochs = 15
INFO - train - Last loss = 0.8644022345542908

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1,67 @@
{
"artifacts": [],
"command": "my_main",
"experiment": {
"base_dir": "/home/przemek/ium_434766",
"dependencies": [
"numpy==1.20.1",
"pandas==1.2.4",
"sacred==0.8.2",
"scikit-learn==0.24.1",
"torch==1.8.1"
],
"mainfile": "sacred-pytorch1.py",
"name": "ium_s434766",
"repositories": [],
"sources": [
[
"sacred-pytorch1.py",
"_sources/sacred-pytorch1_e0e75cc8f994d35ec0d404b605721131.py"
]
]
},
"heartbeat": "2021-05-16T16:02:13.422226",
"host": {
"ENV": {},
"cpu": "Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz",
"hostname": "OwczarPC",
"os": [
"Linux",
"Linux-5.4.72-microsoft-standard-WSL2-x86_64-with-glibc2.29"
],
"python_version": "3.8.5"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false,
"COMMAND": null,
"UPDATE": [],
"help": false,
"with": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-16T16:02:13.390881",
"status": "COMPLETED",
"stop_time": "2021-05-16T16:02:13.420375"
}

View File

@ -0,0 +1,6 @@
{
"batch_size": 16,
"learning_rate": 0.001,
"num_epochs": 15,
"seed": 562374018
}

View File

@ -0,0 +1,4 @@
INFO - ium_s434766 - Running command 'my_main'
INFO - ium_s434766 - Started run with ID "4"
INFO - train - Batch size = 16 Epochs = 15
INFO - train - Last loss = 0.2932703197002411

View File

@ -0,0 +1 @@
{}

View File

@ -0,0 +1,65 @@
{
"artifacts": [
"stroke.pth"
],
"command": "my_main",
"experiment": {
"base_dir": "/home/przemek/ium_434766",
"dependencies": [
"numpy==1.20.1",
"pandas==1.2.4",
"sacred==0.8.2",
"scikit-learn==0.24.1",
"torch==1.8.1"
],
"mainfile": "sacred-pytorch1.py",
"name": "ium_s434766",
"repositories": [],
"sources": [
[
"sacred-pytorch1.py",
"_sources/sacred-pytorch1_e0e75cc8f994d35ec0d404b605721131.py"
]
]
},
"heartbeat": "2021-05-16T16:02:13.502327",
"host": {
"ENV": {},
"cpu": "Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz",
"hostname": "OwczarPC",
"os": [
"Linux",
"Linux-5.4.72-microsoft-standard-WSL2-x86_64-with-glibc2.29"
],
"python_version": "3.8.5"
},
"meta": {
"command": "my_main",
"options": {
"--beat-interval": null,
"--capture": null,
"--comment": null,
"--debug": false,
"--enforce_clean": false,
"--file_storage": null,
"--force": false,
"--help": false,
"--loglevel": null,
"--mongo_db": null,
"--name": null,
"--pdb": false,
"--print-config": false,
"--priority": null,
"--queue": false,
"--s3": null,
"--sql": null,
"--tiny_db": null,
"--unobserved": false
}
},
"resources": [],
"result": null,
"start_time": "2021-05-16T16:02:13.476148",
"status": "COMPLETED",
"stop_time": "2021-05-16T16:02:13.501265"
}

Binary file not shown.

View File

@ -0,0 +1,85 @@
import torch
import sys
import torch.nn.functional as F
from torch import nn
from sklearn.metrics import accuracy_score, mean_squared_error
import numpy as np
import pandas as pd
from sacred import Experiment
from sacred.observers import FileStorageObserver
np.set_printoptions(suppress=False)
ex = Experiment("ium_s434766", interactive=False, save_git_info=False)
ex.observers.append(FileStorageObserver("ium_s434766/my_runs"))
@ex.config
def my_config():
num_epochs = 15
batch_size = 16
learning_rate = 0.001
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
@ex.capture
def train(num_epochs, batch_size, learning_rate, _log):
data_train = pd.read_csv("data_train.csv")
data_test = pd.read_csv("data_test.csv")
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
x_train = data_train[FEATURES].astype(np.float32)
y_train = data_train['stroke'].astype(np.float32)
x_test = data_test[FEATURES].astype(np.float32)
y_test = data_test['stroke'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
input_dim = 6
output_dim = 1
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
_log.info(info_params)
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
info_loss = "Last loss = " + str(loss.item())
_log.info(info_loss)
y_pred = model(fTest)
# print("predicted Y value: ", y_pred.data)
torch.save(model.state_dict(), 'stroke.pth')
@ex.automain
def my_main(num_epochs, batch_size, learning_rate, _run):
train()
r = ex.run()
ex.add_artifact("stroke_model/stroke.pth")

View File

@ -0,0 +1,85 @@
import torch
import sys
import torch.nn.functional as F
from torch import nn
from sklearn.metrics import accuracy_score, mean_squared_error
import numpy as np
import pandas as pd
from sacred import Experiment
from sacred.observers import FileStorageObserver
np.set_printoptions(suppress=False)
ex = Experiment("ium_s434766", interactive=False, save_git_info=False)
ex.observers.append(FileStorageObserver("ium_s434766/my_runs"))
@ex.config
def my_config():
num_epochs = 15
batch_size = 16
learning_rate = 0.001
class LogisticRegressionModel(nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
@ex.capture
def train(num_epochs, batch_size, learning_rate, _log):
data_train = pd.read_csv("data_train.csv")
data_test = pd.read_csv("data_test.csv")
FEATURES = ['age','hypertension','heart_disease','ever_married', 'avg_glucose_level', 'bmi']
x_train = data_train[FEATURES].astype(np.float32)
y_train = data_train['stroke'].astype(np.float32)
x_test = data_test[FEATURES].astype(np.float32)
y_test = data_test['stroke'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(2945,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
input_dim = 6
output_dim = 1
info_params = "Batch size = " + str(batch_size) + " Epochs = " + str(num_epochs)
_log.info(info_params)
model = LogisticRegressionModel(input_dim, output_dim)
criterion = torch.nn.BCELoss(reduction='mean')
optimizer = torch.optim.SGD(model.parameters(), lr = learning_rate)
for epoch in range(num_epochs):
# print ("Epoch #",epoch)
model.train()
optimizer.zero_grad()
# Forward pass
y_pred = model(fTrain)
# Compute Loss
loss = criterion(y_pred, tTrain)
# print(loss.item())
# Backward pass
loss.backward()
optimizer.step()
info_loss = "Last loss = " + str(loss.item())
_log.info(info_loss)
y_pred = model(fTest)
# print("predicted Y value: ", y_pred.data)
torch.save(model.state_dict(), 'stroke.pth')
@ex.automain
def my_main(num_epochs, batch_size, learning_rate, _run):
train()
r = ex.run()
ex.add_artifact("stroke.pth")

View File

@ -82,4 +82,4 @@ def my_main(num_epochs, batch_size, learning_rate, _run):
train() train()
r = ex.run() r = ex.run()
ex.add_artifact("stroke_model/stroke.pth") ex.add_artifact("stroke.pth")

Binary file not shown.