2022-05-08 23:31:17 +02:00
|
|
|
import torch
|
|
|
|
import csv
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
import pandas as pd
|
|
|
|
from os.path import exists
|
|
|
|
|
|
|
|
from utils import read_csv, clean_text, get_words_from_line
|
2022-05-09 10:51:57 +02:00
|
|
|
from nn import Bigrams, Model
|
2022-05-08 23:31:17 +02:00
|
|
|
|
|
|
|
data = read_csv("train/in.tsv.xz")
|
|
|
|
train_words = read_csv("train/expected.tsv")
|
|
|
|
|
|
|
|
train_data = data[[6, 7]]
|
|
|
|
train_data = pd.concat([train_data, train_words], axis=1)
|
|
|
|
train_data = train_data[6] + train_data[0] + train_data[7]
|
|
|
|
train_data = train_data.apply(clean_text)
|
|
|
|
|
|
|
|
vocab_size = 30000
|
|
|
|
embed_size = 150
|
|
|
|
|
2022-05-09 10:51:57 +02:00
|
|
|
train_dataset = Bigrams(train_data, vocab_size)
|
2022-05-08 23:31:17 +02:00
|
|
|
|
|
|
|
##################################################################################
|
|
|
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
model = Model(vocab_size, embed_size).to(device)
|
|
|
|
print(device)
|
|
|
|
if(not exists('model1.bin')):
|
|
|
|
data = DataLoader(train_dataset, batch_size=8000)
|
|
|
|
optimizer = torch.optim.Adam(model.parameters())
|
|
|
|
criterion = torch.nn.NLLLoss()
|
|
|
|
|
|
|
|
model.train()
|
|
|
|
step = 0
|
|
|
|
for i in range(2):
|
|
|
|
print(f"EPOCH {i}=========================")
|
|
|
|
for x, y in data:
|
|
|
|
x = x.to(device)
|
|
|
|
y = y.to(device)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
ypredicted = model(x)
|
|
|
|
loss = criterion(torch.log(ypredicted), y)
|
|
|
|
if step % 100 == 0:
|
|
|
|
print(step, loss)
|
|
|
|
step += 1
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
|
|
|
|
torch.save(model.state_dict(), 'model1.bin')
|
|
|
|
else:
|
|
|
|
print("Loading model1")
|
|
|
|
model.load_state_dict(torch.load('model1.bin'))
|
|
|
|
|
|
|
|
###################################################################
|
|
|
|
|
|
|
|
vocab = train_dataset.vocab
|
|
|
|
|
|
|
|
def predict(tokens):
|
|
|
|
ixs = torch.tensor(vocab.forward(tokens)).to(device)
|
|
|
|
out = model(ixs)
|
|
|
|
top = torch.topk(out[0], 8)
|
|
|
|
top_indices = top.indices.tolist()
|
|
|
|
top_probs = top.values.tolist()
|
|
|
|
top_words = vocab.lookup_tokens(top_indices)
|
|
|
|
result = ""
|
|
|
|
for word, prob in list(zip(top_words, top_probs)):
|
|
|
|
result += f"{word}:{prob} "
|
|
|
|
# result += f':0.01'
|
|
|
|
return result
|
|
|
|
|
|
|
|
DEFAULT_PREDICTION = "a:0.2 the:0.2 to:0.2 of:0.1 and:0.1 of:0.1 :0.1"
|
|
|
|
|
|
|
|
def predict_file(result_path, data):
|
|
|
|
with open(result_path, "w+", encoding="UTF-8") as f:
|
|
|
|
for row in data:
|
|
|
|
result = {}
|
|
|
|
before = None
|
|
|
|
for before in get_words_from_line(clean_text(str(row)), False):
|
|
|
|
pass
|
|
|
|
before = [before]
|
|
|
|
print(before)
|
|
|
|
if(len(before) < 1):
|
|
|
|
result = DEFAULT_PREDICTION
|
|
|
|
else:
|
|
|
|
result = predict(before)
|
|
|
|
result = result.strip()
|
|
|
|
f.write(result + "\n")
|
|
|
|
print(result)
|
|
|
|
|
|
|
|
dev_data = pd.read_csv("dev-0/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
|
|
|
dev_data = dev_data.apply(clean_text)
|
|
|
|
predict_file("dev-0/out.tsv", dev_data)
|
|
|
|
|
|
|
|
test_data = pd.read_csv("test-A/in.tsv.xz", sep='\t', header=None, quoting=csv.QUOTE_NONE)[6]
|
|
|
|
test_data = test_data.apply(clean_text)
|
|
|
|
predict_file("test-A/out.tsv", test_data)
|