Wygładzanie Alpha
This commit is contained in:
parent
44393b0010
commit
6da349e88f
BIN
__pycache__/train.cpython-39.pyc
Normal file
BIN
__pycache__/train.cpython-39.pyc
Normal file
Binary file not shown.
BIN
__pycache__/utils.cpython-39.pyc
Normal file
BIN
__pycache__/utils.cpython-39.pyc
Normal file
Binary file not shown.
10519
dev-0/out.tsv
Normal file
10519
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
26
run.py
Normal file
26
run.py
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from collections import defaultdict
|
||||||
|
from utils import read_csv
|
||||||
|
from train import train_model, predict_data
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
data = read_csv("train/in.tsv.xz")
|
||||||
|
train_words = read_csv("train/expected.tsv")
|
||||||
|
|
||||||
|
train_data = data[[6, 7]]
|
||||||
|
train_data = pd.concat([train_data, train_words], axis=1)
|
||||||
|
train_data["607"] = train_data[6] + train_data[0] + train_data[7]
|
||||||
|
|
||||||
|
model = defaultdict(lambda: defaultdict(lambda: 0))
|
||||||
|
alpha = 0.00002
|
||||||
|
vocab = set()
|
||||||
|
|
||||||
|
train_model(train_data, model,vocab,alpha)
|
||||||
|
|
||||||
|
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
|
||||||
|
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
57
train.py
Normal file
57
train.py
Normal file
@ -0,0 +1,57 @@
|
|||||||
|
from collections import Counter
|
||||||
|
from nltk import bigrams, word_tokenize
|
||||||
|
from utils import read_csv, ENCODING, clean_text
|
||||||
|
|
||||||
|
DEFAULT_PREDICTION = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
|
||||||
|
def train_model(data, model,vocab,alpha):
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
words = word_tokenize(clean_text(row["607"]))
|
||||||
|
for w1, w2 in bigrams(words, pad_left=True, pad_right=True):
|
||||||
|
if w1 and w2:
|
||||||
|
model[w2][w1] += 1
|
||||||
|
vocab.add(w2)
|
||||||
|
vocab.add(w1)
|
||||||
|
|
||||||
|
for w2 in model:
|
||||||
|
total_count = float(sum(model[w2].values()))
|
||||||
|
denominator = total_count + alpha * len(vocab)
|
||||||
|
for w1 in model[w2]:
|
||||||
|
nominator = model[w2][w1] + alpha
|
||||||
|
model[w2][w1] /= nominator / denominator
|
||||||
|
|
||||||
|
|
||||||
|
def predict_data(read_path, save_path, model):
|
||||||
|
data = read_csv(read_path)
|
||||||
|
|
||||||
|
with open(save_path, "w", encoding=ENCODING) as f:
|
||||||
|
for _, row in data.iterrows():
|
||||||
|
words = word_tokenize(clean_text(row[7]))
|
||||||
|
if len(words) < 3:
|
||||||
|
prediction = DEFAULT_PREDICTION
|
||||||
|
else:
|
||||||
|
prediction = predict(words[0], model)
|
||||||
|
f.write(prediction + "\n")
|
||||||
|
|
||||||
|
|
||||||
|
def predict(word, model):
|
||||||
|
predictions = dict(model[word])
|
||||||
|
most_common = dict(Counter(predictions).most_common(6))
|
||||||
|
|
||||||
|
total_prob = 0.0
|
||||||
|
str_prediction = ""
|
||||||
|
|
||||||
|
for word, prob in most_common.items():
|
||||||
|
total_prob += prob
|
||||||
|
str_prediction += f"{word}:{prob} "
|
||||||
|
|
||||||
|
if total_prob == 0.0:
|
||||||
|
return DEFAULT_PREDICTION
|
||||||
|
|
||||||
|
rem_prob = 1 - total_prob
|
||||||
|
if rem_prob < 0.01:
|
||||||
|
rem_prob = 0.01
|
||||||
|
|
||||||
|
str_prediction += f":{rem_prob}"
|
||||||
|
|
||||||
|
return str_prediction
|
33
utils.py
Normal file
33
utils.py
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
import pandas as pd
|
||||||
|
import regex as re
|
||||||
|
from csv import QUOTE_NONE
|
||||||
|
|
||||||
|
ENCODING = "utf-8"
|
||||||
|
|
||||||
|
REP = re.compile(r"[{}\[\]\&%^$*#\(\)@\t\n0123456789]+")
|
||||||
|
REM = re.compile(r"'s|[\-]\\n|\-\\n|\p{P}")
|
||||||
|
|
||||||
|
def read_csv(fname):
|
||||||
|
return pd.read_csv(
|
||||||
|
fname,
|
||||||
|
sep="\t",
|
||||||
|
on_bad_lines='skip',
|
||||||
|
header=None,
|
||||||
|
quoting=QUOTE_NONE,
|
||||||
|
encoding=ENCODING
|
||||||
|
)
|
||||||
|
|
||||||
|
def clean_text(text):
|
||||||
|
res = str(text).lower().strip()
|
||||||
|
res = res.replace("’", "'")
|
||||||
|
res = REM.sub("", res)
|
||||||
|
res = REP.sub(" ", res)
|
||||||
|
res = res.replace("'s", " is")
|
||||||
|
res = res.replace("'ll", " will")
|
||||||
|
res = res.replace("won't", "will not")
|
||||||
|
res = res.replace("isn't", "is not")
|
||||||
|
res = res.replace("aren't", "are not")
|
||||||
|
res = res.replace("'ve'", "have")
|
||||||
|
return res.replace("'m", " am")
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user