ium_434788/Zadanie_08_MLflow.py
Dominik Strzako 3cfbb7e703 MLFlow
2021-05-16 13:02:05 +02:00

69 lines
2.1 KiB
Python

from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
from sklearn.metrics import accuracy_score, classification_report
import pandas as pd
from sklearn.model_selection import train_test_split
import numpy as np
import sys
from sklearn.preprocessing import StandardScaler, LabelEncoder
from tensorflow.keras.optimizers import Adam
from datetime import datetime
import os
import sys
import mlflow
with mlflow.start_run():
batch_param = int(sys.argv[1]) if len(sys.argv) > 1 else 16
epoch_param = int(sys.argv[2]) if len(sys.argv) > 2 else 5
#mlflow.log_param("batch_size: ", batch_param)
#mlflow.log_param("epochs: ", epoch_param)
wine=pd.read_csv('train.csv')
y = wine['quality']
x = wine.drop('quality', axis=1)
citricacid = x['fixed acidity'] * x['citric acid']
citric_acidity = pd.DataFrame(citricacid, columns=['citric_accidity'])
density_acidity = x['fixed acidity'] * x['density']
density_acidity = pd.DataFrame(density_acidity, columns=['density_acidity'])
x = wine.join(citric_acidity).join(density_acidity)
bins = (2, 5, 8)
gnames = ['bad', 'nice']
y = pd.cut(y, bins = bins, labels = gnames)
enc = LabelEncoder()
yenc = enc.fit_transform(y)
scale = StandardScaler()
scaled_x = scale.fit_transform(x)
NeuralModel = Sequential([
Dense(128, activation='relu', input_shape=(14,)),
Dense(32, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
rms = Adam(lr=0.0003)
NeuralModel.compile(optimizer=rms, loss='binary_crossentropy', metrics=['accuracy'])
NeuralModel.fit(scaled_x, yenc, batch_size= batch_param, epochs = epoch_param) #verbose = 1
#TO TYLKO NA POTRZEBY ZADANIA
y_pred = NeuralModel.predict(scaled_x)
y_pred = np.around(y_pred, decimals=0)
results = accuracy_score(yenc,y_pred)
#mlflow.log_metric("Accuracy: ", results)