added kenlm model solution
This commit is contained in:
commit
df213184ca
9
LICENSE
Normal file
9
LICENSE
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) <year> <copyright holders>
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
9
README.md
Normal file
9
README.md
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
Challenging America word-gap prediction
|
||||||
|
===================================
|
||||||
|
|
||||||
|
Guess a word in a gap.
|
||||||
|
|
||||||
|
Evaluation metric
|
||||||
|
-----------------
|
||||||
|
|
||||||
|
LikelihoodHashed is the metric
|
16
alpha_test.md
Normal file
16
alpha_test.md
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
## Tested on 10k rows
|
||||||
|
|
||||||
|
|alpha|result|
|
||||||
|
|---|---|
|
||||||
|
|__0.0001__|__603.35__|
|
||||||
|
|0.001|656.93|
|
||||||
|
|0.1|933.45|
|
||||||
|
|0.2|962.28|
|
||||||
|
|0.3|975.78|
|
||||||
|
|0.4|983.92|
|
||||||
|
|0.5|989.45|
|
||||||
|
|0.6|993.51|
|
||||||
|
|0.7|996.63|
|
||||||
|
|0.8|999.11|
|
||||||
|
|0.9|1001.13|
|
||||||
|
|1.0|1002.83|
|
1
config.txt
Normal file
1
config.txt
Normal file
@ -0,0 +1 @@
|
|||||||
|
--metric PerplexityHashed --precision 2 --in-header in-header.tsv --out-header out-header.tsv
|
10519
dev-0/expected.tsv
Normal file
10519
dev-0/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
dev-0/in.tsv.xz
Normal file
BIN
dev-0/in.tsv.xz
Normal file
Binary file not shown.
10519
dev-0/out.tsv
Normal file
10519
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
1
in-header.tsv
Normal file
1
in-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
FileId Year LeftContext RightContext
|
|
5
kenlm.sh
Normal file
5
kenlm.sh
Normal file
@ -0,0 +1,5 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
KENLM_BUILD_PATH='/home/dawid/kenlm/build'
|
||||||
|
$KENLM_BUILD_PATH/bin/lmplz -o 3 < train_data.txt > kenlm_model.arpa
|
||||||
|
$KENLM_BUILD_PATH/bin/build_binary kenlm_model.arpa kenlm_model.binary
|
1
out-header.tsv
Normal file
1
out-header.tsv
Normal file
@ -0,0 +1 @@
|
|||||||
|
Word
|
|
126
run.py
Normal file
126
run.py
Normal file
@ -0,0 +1,126 @@
|
|||||||
|
from cmath import log10
|
||||||
|
import csv
|
||||||
|
import pandas as pd
|
||||||
|
import regex as re
|
||||||
|
import os
|
||||||
|
import kenlm
|
||||||
|
|
||||||
|
from nltk import word_tokenize
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
from english_words import english_words_set
|
||||||
|
|
||||||
|
# nltk.download("punkt")
|
||||||
|
|
||||||
|
# train set
|
||||||
|
train_data = pd.read_csv(
|
||||||
|
"train/in.tsv.xz",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=100_000
|
||||||
|
)
|
||||||
|
|
||||||
|
# training labels
|
||||||
|
train_labels = pd.read_csv(
|
||||||
|
"train/expected.tsv",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
nrows=100_000
|
||||||
|
)
|
||||||
|
|
||||||
|
# dev set
|
||||||
|
dev_data = pd.read_csv(
|
||||||
|
"dev-0/in.tsv.xz",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
)
|
||||||
|
|
||||||
|
# test set
|
||||||
|
test_data = pd.read_csv(
|
||||||
|
"test-A/in.tsv.xz",
|
||||||
|
sep="\t",
|
||||||
|
error_bad_lines=False,
|
||||||
|
warn_bad_lines=False,
|
||||||
|
header=None,
|
||||||
|
quoting=csv.QUOTE_NONE,
|
||||||
|
)
|
||||||
|
|
||||||
|
def prepare_text(text):
|
||||||
|
text = text.lower().replace("-\\n", "").replace("\\n", " ")
|
||||||
|
text = re.sub(r"\p{P}", "", text)
|
||||||
|
|
||||||
|
return text
|
||||||
|
|
||||||
|
def predict(word1, word2):
|
||||||
|
predictions = []
|
||||||
|
for word in english_words_set:
|
||||||
|
sentence = word1 + ' ' + word + ' ' + word2
|
||||||
|
text_score = model.score(sentence, bos=False, eos=False)
|
||||||
|
|
||||||
|
if len(predictions) < 12:
|
||||||
|
predictions.append((word, text_score))
|
||||||
|
else:
|
||||||
|
worst_score = None
|
||||||
|
for score in predictions:
|
||||||
|
if not worst_score:
|
||||||
|
worst_score = score
|
||||||
|
else:
|
||||||
|
if worst_score[1] > score[1]:
|
||||||
|
worst_score = score
|
||||||
|
if worst_score[1] < text_score:
|
||||||
|
predictions.remove(worst_score)
|
||||||
|
predictions.append((word, text_score))
|
||||||
|
probs = sorted(predictions, key=lambda tup: tup[1], reverse=True)
|
||||||
|
pred_str = ''
|
||||||
|
for word, prob in probs:
|
||||||
|
pred_str += f'{word}:{prob} '
|
||||||
|
pred_str += f':{log10(0.99)}'
|
||||||
|
return pred_str
|
||||||
|
|
||||||
|
def write_output():
|
||||||
|
with open("dev-0/out.tsv", "w") as file:
|
||||||
|
for _, row in dev_data.iterrows():
|
||||||
|
text = prepare_text(str(row[7]))
|
||||||
|
words = word_tokenize(text)
|
||||||
|
if len(words) < 3:
|
||||||
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
else:
|
||||||
|
prediction = predict(words[0], words[1])
|
||||||
|
file.write(prediction + "\n")
|
||||||
|
|
||||||
|
with open("test-A/out.tsv", "w") as file:
|
||||||
|
for _, row in test_data.iterrows():
|
||||||
|
text = prepare_text(str(row[7]))
|
||||||
|
words = word_tokenize(text)
|
||||||
|
if len(words) < 3:
|
||||||
|
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
|
||||||
|
else:
|
||||||
|
prediction = predict(words[0], words[1])
|
||||||
|
file.write(prediction + "\n")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
print("Preparing data...")
|
||||||
|
train_data = train_data[[6, 7]]
|
||||||
|
train_data = pd.concat([train_data, train_labels], axis=1)
|
||||||
|
train_data["final"] = train_data[6] + train_data[0] + train_data[7]
|
||||||
|
train = train_data[['final']]
|
||||||
|
|
||||||
|
with open("./train_data.txt", 'a') as f:
|
||||||
|
for _, row in train_data.iterrows():
|
||||||
|
text = prepare_text(str(row["final"]))
|
||||||
|
f.write(text + '\n')
|
||||||
|
|
||||||
|
print("Preparing model...")
|
||||||
|
os.system('sh ./kenlm.sh')
|
||||||
|
model=kenlm.Model("kenlm_model.binary")
|
||||||
|
|
||||||
|
print("Writing outputs...")
|
||||||
|
write_output()
|
BIN
test-A/in.tsv.xz
Normal file
BIN
test-A/in.tsv.xz
Normal file
Binary file not shown.
7414
test-A/out.tsv
Normal file
7414
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
432022
train/expected.tsv
Normal file
432022
train/expected.tsv
Normal file
File diff suppressed because it is too large
Load Diff
BIN
train/in.tsv.xz
Normal file
BIN
train/in.tsv.xz
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user