Compare commits

..

1 Commits

Author SHA1 Message Date
JPogodzinski
8542482455 s437622 kenlm 2022-04-23 19:17:09 +02:00
3 changed files with 18032 additions and 17987 deletions

File diff suppressed because it is too large Load Diff

153
run.py
View File

@ -1,73 +1,118 @@
from nltk import trigrams, word_tokenize #!/usr/bin/env python
from collections import defaultdict, Counter # coding: utf-8
# In[1]:
import pandas as pd import pandas as pd
import csv import csv
import regex as re import regex as re
import kenlm
from english_words import english_words_alpha_set
from math import log10
from nltk import trigrams, word_tokenize
# In[2]:
default_pred = 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9' default_pred = 'to:0.02 be:0.02 the:0.02 or:0.01 not:0.01 and:0.01 a:0.01 :0.9'
# In[3]:
def preprocess(text): def preprocess(text):
text = text.lower().replace('-\\n', '').replace('\\n', ' ') text = text.lower().replace('-\\n', '').replace('\\n', ' ')
return re.sub(r'\p{P}', '', text) return re.sub(r'\p{P}', '', text)
class Model(): # In[4]:
def __init__(self, alpha, test_file_name):
train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE,
nrows=20000)
train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None,
quoting=csv.QUOTE_NONE, nrows=20000)
train_data = train_data[[6, 7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data['line'] = train_data[6] + train_data[0] + train_data[7]
self.file = train_data[['line']]
self.test_file_name = test_file_name
self.alpha = alpha;
self.model = defaultdict(lambda: defaultdict(lambda: 0))
def train(self): train_data = pd.read_csv('train/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE,
rows = self.file.iterrows() nrows=20000)
rows_len = len(self.file) train_labels = pd.read_csv('train/expected.tsv', sep='\t', on_bad_lines='skip', header=None,
for index, (_, row) in enumerate(rows): quoting=csv.QUOTE_NONE, nrows=20000)
text = preprocess(str(row['line'])) data = pd.concat([train_data, train_labels], axis=1)
words = word_tokenize(text) data=train_data[6] + train_data[0] + train_data[7]
for word_1, word_2, word_3 in trigrams(words, pad_right=True, pad_left=True): data = data.apply(preprocess)
if word_1 and word_2 and word_3:
self.model[(word_1, word_3)][word_2] += 1
model_len = len(self.model)
for index, words_1_3 in enumerate(self.model):
count = sum(self.model[words_1_3].values())
for word_2 in self.model[words_1_3]:
self.model[words_1_3][word_2] += self.alpha
self.model[words_1_3][word_2] /= float(count + self.alpha + len(word_2))
def predict(self, before, after): with open("train_file.txt", "w+") as f:
prediction = dict(Counter(dict(self.model[before, after])).most_common(5)) for text in data:
result = [] f.write(text + "\n")
prob = 0.0
for key, value in prediction.items():
prob += value
result.append(f'{key}:{value} ')
if prob == 0.0:
return default_pred
result.append(f':{max(1 - prob, 0.01)}')
return ''.join(result)
def make_prediction(self):
data = pd.read_csv(f'{self.test_file_name}/in.tsv.xz', sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE) # In[5]:
with open(f'{self.test_file_name}/out.tsv', 'w', encoding='utf-8') as file_out:
for _, row in data.iterrows():
before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7]))) KENLM_BUILD_PATH='../kenlm/kenlm/build'
if len(before) < 3 or len(after) < 3: get_ipython().system('$KENLM_BUILD_PATH/bin/lmplz -o 4 < train_file.txt > model.arpa')
prediction = default_pred get_ipython().system('rm train_file.txt')
# In[6]:
model = kenlm.Model("model.arpa")
# In[7]:
def predict(before, after):
best_scores = []
for word in english_words_alpha_set:
text = ' '.join([before, word, after])
text_score = model.score(text, bos=False, eos=False)
if len(best_scores) < 12:
best_scores.append((word, text_score))
else:
is_better = False
worst_score = None
for score in best_scores:
if not worst_score:
worst_score = score
else: else:
prediction = self.predict(before[-1], after[0]) if worst_score[1] > score[1]:
file_out.write(prediction + '\n') worst_score = score
if worst_score[1] < text_score:
best_scores.remove(worst_score)
best_scores.append((word, text_score))
probs = sorted(best_scores, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
# In[8]:
def make_prediction(path, result_path):
data = pd.read_csv(path, sep='\t', on_bad_lines='skip', header=None, quoting=csv.QUOTE_NONE)
with open(result_path, 'w', encoding='utf-8') as file_out:
for _, row in data.iterrows():
before, after = word_tokenize(preprocess(str(row[6]))), word_tokenize(preprocess(str(row[7])))
if len(before) < 2 or len(after) < 2:
prediction = default_pred
else:
prediction = predict(before[-1], after[0])
file_out.write(prediction + '\n')
# In[9]:
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
# In[10]:
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")
alpha = 0.1
model = Model(alpha, 'test-A')
model.train()
model.make_prediction()

File diff suppressed because it is too large Load Diff