575 lines
19 KiB
Python
575 lines
19 KiB
Python
|
# coding=utf-8
|
||
|
#
|
||
|
# KDF.py : a collection of Key Derivation Functions
|
||
|
#
|
||
|
# Part of the Python Cryptography Toolkit
|
||
|
#
|
||
|
# ===================================================================
|
||
|
# The contents of this file are dedicated to the public domain. To
|
||
|
# the extent that dedication to the public domain is not available,
|
||
|
# everyone is granted a worldwide, perpetual, royalty-free,
|
||
|
# non-exclusive license to exercise all rights associated with the
|
||
|
# contents of this file for any purpose whatsoever.
|
||
|
# No rights are reserved.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
|
# SOFTWARE.
|
||
|
# ===================================================================
|
||
|
|
||
|
import re
|
||
|
import struct
|
||
|
from functools import reduce
|
||
|
|
||
|
from Crypto.Util.py3compat import (tobytes, bord, _copy_bytes, iter_range,
|
||
|
tostr, bchr, bstr)
|
||
|
|
||
|
from Crypto.Hash import SHA1, SHA256, HMAC, CMAC, BLAKE2s
|
||
|
from Crypto.Util.strxor import strxor
|
||
|
from Crypto.Random import get_random_bytes
|
||
|
from Crypto.Util.number import size as bit_size, long_to_bytes, bytes_to_long
|
||
|
|
||
|
from Crypto.Util._raw_api import (load_pycryptodome_raw_lib,
|
||
|
create_string_buffer,
|
||
|
get_raw_buffer, c_size_t)
|
||
|
|
||
|
_raw_salsa20_lib = load_pycryptodome_raw_lib("Crypto.Cipher._Salsa20",
|
||
|
"""
|
||
|
int Salsa20_8_core(const uint8_t *x, const uint8_t *y,
|
||
|
uint8_t *out);
|
||
|
""")
|
||
|
|
||
|
_raw_scrypt_lib = load_pycryptodome_raw_lib("Crypto.Protocol._scrypt",
|
||
|
"""
|
||
|
typedef int (core_t)(const uint8_t [64], const uint8_t [64], uint8_t [64]);
|
||
|
int scryptROMix(const uint8_t *data_in, uint8_t *data_out,
|
||
|
size_t data_len, unsigned N, core_t *core);
|
||
|
""")
|
||
|
|
||
|
|
||
|
def PBKDF1(password, salt, dkLen, count=1000, hashAlgo=None):
|
||
|
"""Derive one key from a password (or passphrase).
|
||
|
|
||
|
This function performs key derivation according to an old version of
|
||
|
the PKCS#5 standard (v1.5) or `RFC2898
|
||
|
<https://www.ietf.org/rfc/rfc2898.txt>`_.
|
||
|
|
||
|
Args:
|
||
|
password (string):
|
||
|
The secret password to generate the key from.
|
||
|
salt (byte string):
|
||
|
An 8 byte string to use for better protection from dictionary attacks.
|
||
|
This value does not need to be kept secret, but it should be randomly
|
||
|
chosen for each derivation.
|
||
|
dkLen (integer):
|
||
|
The length of the desired key. The default is 16 bytes, suitable for
|
||
|
instance for :mod:`Crypto.Cipher.AES`.
|
||
|
count (integer):
|
||
|
The number of iterations to carry out. The recommendation is 1000 or
|
||
|
more.
|
||
|
hashAlgo (module):
|
||
|
The hash algorithm to use, as a module or an object from the :mod:`Crypto.Hash` package.
|
||
|
The digest length must be no shorter than ``dkLen``.
|
||
|
The default algorithm is :mod:`Crypto.Hash.SHA1`.
|
||
|
|
||
|
Return:
|
||
|
A byte string of length ``dkLen`` that can be used as key.
|
||
|
"""
|
||
|
|
||
|
if not hashAlgo:
|
||
|
hashAlgo = SHA1
|
||
|
password = tobytes(password)
|
||
|
pHash = hashAlgo.new(password+salt)
|
||
|
digest = pHash.digest_size
|
||
|
if dkLen > digest:
|
||
|
raise TypeError("Selected hash algorithm has a too short digest (%d bytes)." % digest)
|
||
|
if len(salt) != 8:
|
||
|
raise ValueError("Salt is not 8 bytes long (%d bytes instead)." % len(salt))
|
||
|
for i in iter_range(count-1):
|
||
|
pHash = pHash.new(pHash.digest())
|
||
|
return pHash.digest()[:dkLen]
|
||
|
|
||
|
|
||
|
def PBKDF2(password, salt, dkLen=16, count=1000, prf=None, hmac_hash_module=None):
|
||
|
"""Derive one or more keys from a password (or passphrase).
|
||
|
|
||
|
This function performs key derivation according to the PKCS#5 standard (v2.0).
|
||
|
|
||
|
Args:
|
||
|
password (string or byte string):
|
||
|
The secret password to generate the key from.
|
||
|
salt (string or byte string):
|
||
|
A (byte) string to use for better protection from dictionary attacks.
|
||
|
This value does not need to be kept secret, but it should be randomly
|
||
|
chosen for each derivation. It is recommended to use at least 16 bytes.
|
||
|
dkLen (integer):
|
||
|
The cumulative length of the keys to produce.
|
||
|
|
||
|
Due to a flaw in the PBKDF2 design, you should not request more bytes
|
||
|
than the ``prf`` can output. For instance, ``dkLen`` should not exceed
|
||
|
20 bytes in combination with ``HMAC-SHA1``.
|
||
|
count (integer):
|
||
|
The number of iterations to carry out. The higher the value, the slower
|
||
|
and the more secure the function becomes.
|
||
|
|
||
|
You should find the maximum number of iterations that keeps the
|
||
|
key derivation still acceptable on the slowest hardware you must support.
|
||
|
|
||
|
Although the default value is 1000, **it is recommended to use at least
|
||
|
1000000 (1 million) iterations**.
|
||
|
prf (callable):
|
||
|
A pseudorandom function. It must be a function that returns a
|
||
|
pseudorandom byte string from two parameters: a secret and a salt.
|
||
|
The slower the algorithm, the more secure the derivation function.
|
||
|
If not specified, **HMAC-SHA1** is used.
|
||
|
hmac_hash_module (module):
|
||
|
A module from ``Crypto.Hash`` implementing a Merkle-Damgard cryptographic
|
||
|
hash, which PBKDF2 must use in combination with HMAC.
|
||
|
This parameter is mutually exclusive with ``prf``.
|
||
|
|
||
|
Return:
|
||
|
A byte string of length ``dkLen`` that can be used as key material.
|
||
|
If you want multiple keys, just break up this string into segments of the desired length.
|
||
|
"""
|
||
|
|
||
|
password = tobytes(password)
|
||
|
salt = tobytes(salt)
|
||
|
|
||
|
if prf and hmac_hash_module:
|
||
|
raise ValueError("'prf' and 'hmac_hash_module' are mutually exlusive")
|
||
|
|
||
|
if prf is None and hmac_hash_module is None:
|
||
|
hmac_hash_module = SHA1
|
||
|
|
||
|
if prf or not hasattr(hmac_hash_module, "_pbkdf2_hmac_assist"):
|
||
|
# Generic (and slow) implementation
|
||
|
|
||
|
if prf is None:
|
||
|
prf = lambda p,s: HMAC.new(p, s, hmac_hash_module).digest()
|
||
|
|
||
|
def link(s):
|
||
|
s[0], s[1] = s[1], prf(password, s[1])
|
||
|
return s[0]
|
||
|
|
||
|
key = b''
|
||
|
i = 1
|
||
|
while len(key) < dkLen:
|
||
|
s = [ prf(password, salt + struct.pack(">I", i)) ] * 2
|
||
|
key += reduce(strxor, (link(s) for j in range(count)) )
|
||
|
i += 1
|
||
|
|
||
|
else:
|
||
|
# Optimized implementation
|
||
|
key = b''
|
||
|
i = 1
|
||
|
while len(key)<dkLen:
|
||
|
base = HMAC.new(password, b"", hmac_hash_module)
|
||
|
first_digest = base.copy().update(salt + struct.pack(">I", i)).digest()
|
||
|
key += base._pbkdf2_hmac_assist(first_digest, count)
|
||
|
i += 1
|
||
|
|
||
|
return key[:dkLen]
|
||
|
|
||
|
|
||
|
class _S2V(object):
|
||
|
"""String-to-vector PRF as defined in `RFC5297`_.
|
||
|
|
||
|
This class implements a pseudorandom function family
|
||
|
based on CMAC that takes as input a vector of strings.
|
||
|
|
||
|
.. _RFC5297: http://tools.ietf.org/html/rfc5297
|
||
|
"""
|
||
|
|
||
|
def __init__(self, key, ciphermod, cipher_params=None):
|
||
|
"""Initialize the S2V PRF.
|
||
|
|
||
|
:Parameters:
|
||
|
key : byte string
|
||
|
A secret that can be used as key for CMACs
|
||
|
based on ciphers from ``ciphermod``.
|
||
|
ciphermod : module
|
||
|
A block cipher module from `Crypto.Cipher`.
|
||
|
cipher_params : dictionary
|
||
|
A set of extra parameters to use to create a cipher instance.
|
||
|
"""
|
||
|
|
||
|
self._key = _copy_bytes(None, None, key)
|
||
|
self._ciphermod = ciphermod
|
||
|
self._last_string = self._cache = b'\x00' * ciphermod.block_size
|
||
|
|
||
|
# Max number of update() call we can process
|
||
|
self._n_updates = ciphermod.block_size * 8 - 1
|
||
|
|
||
|
if cipher_params is None:
|
||
|
self._cipher_params = {}
|
||
|
else:
|
||
|
self._cipher_params = dict(cipher_params)
|
||
|
|
||
|
@staticmethod
|
||
|
def new(key, ciphermod):
|
||
|
"""Create a new S2V PRF.
|
||
|
|
||
|
:Parameters:
|
||
|
key : byte string
|
||
|
A secret that can be used as key for CMACs
|
||
|
based on ciphers from ``ciphermod``.
|
||
|
ciphermod : module
|
||
|
A block cipher module from `Crypto.Cipher`.
|
||
|
"""
|
||
|
return _S2V(key, ciphermod)
|
||
|
|
||
|
def _double(self, bs):
|
||
|
doubled = bytes_to_long(bs)<<1
|
||
|
if bord(bs[0]) & 0x80:
|
||
|
doubled ^= 0x87
|
||
|
return long_to_bytes(doubled, len(bs))[-len(bs):]
|
||
|
|
||
|
def update(self, item):
|
||
|
"""Pass the next component of the vector.
|
||
|
|
||
|
The maximum number of components you can pass is equal to the block
|
||
|
length of the cipher (in bits) minus 1.
|
||
|
|
||
|
:Parameters:
|
||
|
item : byte string
|
||
|
The next component of the vector.
|
||
|
:Raise TypeError: when the limit on the number of components has been reached.
|
||
|
"""
|
||
|
|
||
|
if self._n_updates == 0:
|
||
|
raise TypeError("Too many components passed to S2V")
|
||
|
self._n_updates -= 1
|
||
|
|
||
|
mac = CMAC.new(self._key,
|
||
|
msg=self._last_string,
|
||
|
ciphermod=self._ciphermod,
|
||
|
cipher_params=self._cipher_params)
|
||
|
self._cache = strxor(self._double(self._cache), mac.digest())
|
||
|
self._last_string = _copy_bytes(None, None, item)
|
||
|
|
||
|
def derive(self):
|
||
|
""""Derive a secret from the vector of components.
|
||
|
|
||
|
:Return: a byte string, as long as the block length of the cipher.
|
||
|
"""
|
||
|
|
||
|
if len(self._last_string) >= 16:
|
||
|
# xorend
|
||
|
final = self._last_string[:-16] + strxor(self._last_string[-16:], self._cache)
|
||
|
else:
|
||
|
# zero-pad & xor
|
||
|
padded = (self._last_string + b'\x80' + b'\x00' * 15)[:16]
|
||
|
final = strxor(padded, self._double(self._cache))
|
||
|
mac = CMAC.new(self._key,
|
||
|
msg=final,
|
||
|
ciphermod=self._ciphermod,
|
||
|
cipher_params=self._cipher_params)
|
||
|
return mac.digest()
|
||
|
|
||
|
|
||
|
def HKDF(master, key_len, salt, hashmod, num_keys=1, context=None):
|
||
|
"""Derive one or more keys from a master secret using
|
||
|
the HMAC-based KDF defined in RFC5869_.
|
||
|
|
||
|
Args:
|
||
|
master (byte string):
|
||
|
The unguessable value used by the KDF to generate the other keys.
|
||
|
It must be a high-entropy secret, though not necessarily uniform.
|
||
|
It must not be a password.
|
||
|
salt (byte string):
|
||
|
A non-secret, reusable value that strengthens the randomness
|
||
|
extraction step.
|
||
|
Ideally, it is as long as the digest size of the chosen hash.
|
||
|
If empty, a string of zeroes in used.
|
||
|
key_len (integer):
|
||
|
The length in bytes of every derived key.
|
||
|
hashmod (module):
|
||
|
A cryptographic hash algorithm from :mod:`Crypto.Hash`.
|
||
|
:mod:`Crypto.Hash.SHA512` is a good choice.
|
||
|
num_keys (integer):
|
||
|
The number of keys to derive. Every key is :data:`key_len` bytes long.
|
||
|
The maximum cumulative length of all keys is
|
||
|
255 times the digest size.
|
||
|
context (byte string):
|
||
|
Optional identifier describing what the keys are used for.
|
||
|
|
||
|
Return:
|
||
|
A byte string or a tuple of byte strings.
|
||
|
|
||
|
.. _RFC5869: http://tools.ietf.org/html/rfc5869
|
||
|
"""
|
||
|
|
||
|
output_len = key_len * num_keys
|
||
|
if output_len > (255 * hashmod.digest_size):
|
||
|
raise ValueError("Too much secret data to derive")
|
||
|
if not salt:
|
||
|
salt = b'\x00' * hashmod.digest_size
|
||
|
if context is None:
|
||
|
context = b""
|
||
|
|
||
|
# Step 1: extract
|
||
|
hmac = HMAC.new(salt, master, digestmod=hashmod)
|
||
|
prk = hmac.digest()
|
||
|
|
||
|
# Step 2: expand
|
||
|
t = [ b"" ]
|
||
|
n = 1
|
||
|
tlen = 0
|
||
|
while tlen < output_len:
|
||
|
hmac = HMAC.new(prk, t[-1] + context + struct.pack('B', n), digestmod=hashmod)
|
||
|
t.append(hmac.digest())
|
||
|
tlen += hashmod.digest_size
|
||
|
n += 1
|
||
|
derived_output = b"".join(t)
|
||
|
if num_keys == 1:
|
||
|
return derived_output[:key_len]
|
||
|
kol = [derived_output[idx:idx + key_len]
|
||
|
for idx in iter_range(0, output_len, key_len)]
|
||
|
return list(kol[:num_keys])
|
||
|
|
||
|
|
||
|
|
||
|
def scrypt(password, salt, key_len, N, r, p, num_keys=1):
|
||
|
"""Derive one or more keys from a passphrase.
|
||
|
|
||
|
Args:
|
||
|
password (string):
|
||
|
The secret pass phrase to generate the keys from.
|
||
|
salt (string):
|
||
|
A string to use for better protection from dictionary attacks.
|
||
|
This value does not need to be kept secret,
|
||
|
but it should be randomly chosen for each derivation.
|
||
|
It is recommended to be at least 16 bytes long.
|
||
|
key_len (integer):
|
||
|
The length in bytes of every derived key.
|
||
|
N (integer):
|
||
|
CPU/Memory cost parameter. It must be a power of 2 and less
|
||
|
than :math:`2^{32}`.
|
||
|
r (integer):
|
||
|
Block size parameter.
|
||
|
p (integer):
|
||
|
Parallelization parameter.
|
||
|
It must be no greater than :math:`(2^{32}-1)/(4r)`.
|
||
|
num_keys (integer):
|
||
|
The number of keys to derive. Every key is :data:`key_len` bytes long.
|
||
|
By default, only 1 key is generated.
|
||
|
The maximum cumulative length of all keys is :math:`(2^{32}-1)*32`
|
||
|
(that is, 128TB).
|
||
|
|
||
|
A good choice of parameters *(N, r , p)* was suggested
|
||
|
by Colin Percival in his `presentation in 2009`__:
|
||
|
|
||
|
- *( 2¹⁴, 8, 1 )* for interactive logins (≤100ms)
|
||
|
- *( 2²⁰, 8, 1 )* for file encryption (≤5s)
|
||
|
|
||
|
Return:
|
||
|
A byte string or a tuple of byte strings.
|
||
|
|
||
|
.. __: http://www.tarsnap.com/scrypt/scrypt-slides.pdf
|
||
|
"""
|
||
|
|
||
|
if 2 ** (bit_size(N) - 1) != N:
|
||
|
raise ValueError("N must be a power of 2")
|
||
|
if N >= 2 ** 32:
|
||
|
raise ValueError("N is too big")
|
||
|
if p > ((2 ** 32 - 1) * 32) // (128 * r):
|
||
|
raise ValueError("p or r are too big")
|
||
|
|
||
|
prf_hmac_sha256 = lambda p, s: HMAC.new(p, s, SHA256).digest()
|
||
|
|
||
|
stage_1 = PBKDF2(password, salt, p * 128 * r, 1, prf=prf_hmac_sha256)
|
||
|
|
||
|
scryptROMix = _raw_scrypt_lib.scryptROMix
|
||
|
core = _raw_salsa20_lib.Salsa20_8_core
|
||
|
|
||
|
# Parallelize into p flows
|
||
|
data_out = []
|
||
|
for flow in iter_range(p):
|
||
|
idx = flow * 128 * r
|
||
|
buffer_out = create_string_buffer(128 * r)
|
||
|
result = scryptROMix(stage_1[idx : idx + 128 * r],
|
||
|
buffer_out,
|
||
|
c_size_t(128 * r),
|
||
|
N,
|
||
|
core)
|
||
|
if result:
|
||
|
raise ValueError("Error %X while running scrypt" % result)
|
||
|
data_out += [ get_raw_buffer(buffer_out) ]
|
||
|
|
||
|
dk = PBKDF2(password,
|
||
|
b"".join(data_out),
|
||
|
key_len * num_keys, 1,
|
||
|
prf=prf_hmac_sha256)
|
||
|
|
||
|
if num_keys == 1:
|
||
|
return dk
|
||
|
|
||
|
kol = [dk[idx:idx + key_len]
|
||
|
for idx in iter_range(0, key_len * num_keys, key_len)]
|
||
|
return kol
|
||
|
|
||
|
|
||
|
def _bcrypt_encode(data):
|
||
|
s = "./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
||
|
|
||
|
bits = []
|
||
|
for c in data:
|
||
|
bits_c = bin(bord(c))[2:].zfill(8)
|
||
|
bits.append(bstr(bits_c))
|
||
|
bits = b"".join(bits)
|
||
|
|
||
|
bits6 = [ bits[idx:idx+6] for idx in range(0, len(bits), 6) ]
|
||
|
|
||
|
result = []
|
||
|
for g in bits6[:-1]:
|
||
|
idx = int(g, 2)
|
||
|
result.append(s[idx])
|
||
|
|
||
|
g = bits6[-1]
|
||
|
idx = int(g, 2) << (6 - len(g))
|
||
|
result.append(s[idx])
|
||
|
result = "".join(result)
|
||
|
|
||
|
return tobytes(result)
|
||
|
|
||
|
|
||
|
def _bcrypt_decode(data):
|
||
|
s = "./ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"
|
||
|
|
||
|
bits = []
|
||
|
for c in tostr(data):
|
||
|
idx = s.find(c)
|
||
|
bits6 = bin(idx)[2:].zfill(6)
|
||
|
bits.append(bits6)
|
||
|
bits = "".join(bits)
|
||
|
|
||
|
modulo4 = len(data) % 4
|
||
|
if modulo4 == 1:
|
||
|
raise ValueError("Incorrect length")
|
||
|
elif modulo4 == 2:
|
||
|
bits = bits[:-4]
|
||
|
elif modulo4 == 3:
|
||
|
bits = bits[:-2]
|
||
|
|
||
|
bits8 = [ bits[idx:idx+8] for idx in range(0, len(bits), 8) ]
|
||
|
|
||
|
result = []
|
||
|
for g in bits8:
|
||
|
result.append(bchr(int(g, 2)))
|
||
|
result = b"".join(result)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _bcrypt_hash(password, cost, salt, constant, invert):
|
||
|
from Crypto.Cipher import _EKSBlowfish
|
||
|
|
||
|
if len(password) > 72:
|
||
|
raise ValueError("The password is too long. It must be 72 bytes at most.")
|
||
|
|
||
|
if not (4 <= cost <= 31):
|
||
|
raise ValueError("bcrypt cost factor must be in the range 4..31")
|
||
|
|
||
|
cipher = _EKSBlowfish.new(password, _EKSBlowfish.MODE_ECB, salt, cost, invert)
|
||
|
ctext = constant
|
||
|
for _ in range(64):
|
||
|
ctext = cipher.encrypt(ctext)
|
||
|
return ctext
|
||
|
|
||
|
|
||
|
def bcrypt(password, cost, salt=None):
|
||
|
"""Hash a password into a key, using the OpenBSD bcrypt protocol.
|
||
|
|
||
|
Args:
|
||
|
password (byte string or string):
|
||
|
The secret password or pass phrase.
|
||
|
It must be at most 72 bytes long.
|
||
|
It must not contain the zero byte.
|
||
|
Unicode strings will be encoded as UTF-8.
|
||
|
cost (integer):
|
||
|
The exponential factor that makes it slower to compute the hash.
|
||
|
It must be in the range 4 to 31.
|
||
|
A value of at least 12 is recommended.
|
||
|
salt (byte string):
|
||
|
Optional. Random byte string to thwarts dictionary and rainbow table
|
||
|
attacks. It must be 16 bytes long.
|
||
|
If not passed, a random value is generated.
|
||
|
|
||
|
Return (byte string):
|
||
|
The bcrypt hash
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if password is longer than 72 bytes or if it contains the zero byte
|
||
|
|
||
|
"""
|
||
|
|
||
|
password = tobytes(password, "utf-8")
|
||
|
|
||
|
if password.find(bchr(0)[0]) != -1:
|
||
|
raise ValueError("The password contains the zero byte")
|
||
|
|
||
|
if len(password) < 72:
|
||
|
password += b"\x00"
|
||
|
|
||
|
if salt is None:
|
||
|
salt = get_random_bytes(16)
|
||
|
if len(salt) != 16:
|
||
|
raise ValueError("bcrypt salt must be 16 bytes long")
|
||
|
|
||
|
ctext = _bcrypt_hash(password, cost, salt, b"OrpheanBeholderScryDoubt", True)
|
||
|
|
||
|
cost_enc = b"$" + bstr(str(cost).zfill(2))
|
||
|
salt_enc = b"$" + _bcrypt_encode(salt)
|
||
|
hash_enc = _bcrypt_encode(ctext[:-1]) # only use 23 bytes, not 24
|
||
|
return b"$2a" + cost_enc + salt_enc + hash_enc
|
||
|
|
||
|
|
||
|
def bcrypt_check(password, bcrypt_hash):
|
||
|
"""Verify if the provided password matches the given bcrypt hash.
|
||
|
|
||
|
Args:
|
||
|
password (byte string or string):
|
||
|
The secret password or pass phrase to test.
|
||
|
It must be at most 72 bytes long.
|
||
|
It must not contain the zero byte.
|
||
|
Unicode strings will be encoded as UTF-8.
|
||
|
bcrypt_hash (byte string, bytearray):
|
||
|
The reference bcrypt hash the password needs to be checked against.
|
||
|
|
||
|
Raises:
|
||
|
ValueError: if the password does not match
|
||
|
"""
|
||
|
|
||
|
bcrypt_hash = tobytes(bcrypt_hash)
|
||
|
|
||
|
if len(bcrypt_hash) != 60:
|
||
|
raise ValueError("Incorrect length of the bcrypt hash: %d bytes instead of 60" % len(bcrypt_hash))
|
||
|
|
||
|
if bcrypt_hash[:4] != b'$2a$':
|
||
|
raise ValueError("Unsupported prefix")
|
||
|
|
||
|
p = re.compile(br'\$2a\$([0-9][0-9])\$([A-Za-z0-9./]{22,22})([A-Za-z0-9./]{31,31})')
|
||
|
r = p.match(bcrypt_hash)
|
||
|
if not r:
|
||
|
raise ValueError("Incorrect bcrypt hash format")
|
||
|
|
||
|
cost = int(r.group(1))
|
||
|
if not (4 <= cost <= 31):
|
||
|
raise ValueError("Incorrect cost")
|
||
|
|
||
|
salt = _bcrypt_decode(r.group(2))
|
||
|
|
||
|
bcrypt_hash2 = bcrypt(password, cost, salt)
|
||
|
|
||
|
secret = get_random_bytes(16)
|
||
|
|
||
|
mac1 = BLAKE2s.new(digest_bits=160, key=secret, data=bcrypt_hash).digest()
|
||
|
mac2 = BLAKE2s.new(digest_bits=160, key=secret, data=bcrypt_hash2).digest()
|
||
|
if mac1 != mac2:
|
||
|
raise ValueError("Incorrect bcrypt hash")
|