PCQRSCANER/venv/Lib/site-packages/nltk/lm/api.py

253 lines
8.3 KiB
Python
Raw Normal View History

2019-12-22 21:51:47 +01:00
# -*- coding: utf-8 -*-
# Natural Language Toolkit: Language Models
#
# Copyright (C) 2001-2019 NLTK Project
# Authors: Ilia Kurenkov <ilia.kurenkov@gmail.com>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""Language Model Interface."""
from __future__ import division, unicode_literals
import random
from abc import ABCMeta, abstractmethod
from bisect import bisect
from six import add_metaclass
from nltk.lm.counter import NgramCounter
from nltk.lm.util import log_base2
from nltk.lm.vocabulary import Vocabulary
try:
from itertools import accumulate
except ImportError:
import operator
def accumulate(iterable, func=operator.add):
"""Return running totals"""
# accumulate([1,2,3,4,5]) --> 1 3 6 10 15
# accumulate([1,2,3,4,5], operator.mul) --> 1 2 6 24 120
it = iter(iterable)
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = func(total, element)
yield total
@add_metaclass(ABCMeta)
class Smoothing(object):
"""Ngram Smoothing Interface
Implements Chen & Goodman 1995's idea that all smoothing algorithms have
certain features in common. This should ideally allow smoothing algoritms to
work both with Backoff and Interpolation.
"""
def __init__(self, vocabulary, counter):
"""
:param vocabulary: The Ngram vocabulary object.
:type vocabulary: nltk.lm.vocab.Vocabulary
:param counter: The counts of the vocabulary items.
:type counter: nltk.lm.counter.NgramCounter
"""
self.vocab = vocabulary
self.counts = counter
@abstractmethod
def unigram_score(self, word):
raise NotImplementedError()
@abstractmethod
def alpha_gamma(self, word, context):
raise NotImplementedError()
def _mean(items):
"""Return average (aka mean) for sequence of items."""
return sum(items) / len(items)
def _random_generator(seed_or_generator):
if isinstance(seed_or_generator, random.Random):
return seed_or_generator
return random.Random(seed_or_generator)
def _weighted_choice(population, weights, random_generator=None):
"""Like random.choice, but with weights.
Heavily inspired by python 3.6 `random.choices`.
"""
if not population:
raise ValueError("Can't choose from empty population")
if len(population) != len(weights):
raise ValueError("The number of weights does not match the population")
cum_weights = list(accumulate(weights))
total = cum_weights[-1]
threshold = random_generator.random()
return population[bisect(cum_weights, total * threshold)]
@add_metaclass(ABCMeta)
class LanguageModel(object):
"""ABC for Language Models.
Cannot be directly instantiated itself.
"""
def __init__(self, order, vocabulary=None, counter=None):
"""Creates new LanguageModel.
:param vocabulary: If provided, this vocabulary will be used instead
of creating a new one when training.
:type vocabulary: `nltk.lm.Vocabulary` or None
:param counter: If provided, use this object to count ngrams.
:type vocabulary: `nltk.lm.NgramCounter` or None
:param ngrams_fn: If given, defines how sentences in training text are turned to ngram
sequences.
:type ngrams_fn: function or None
:param pad_fn: If given, defines how senteces in training text are padded.
:type pad_fn: function or None
"""
self.order = order
self.vocab = Vocabulary() if vocabulary is None else vocabulary
self.counts = NgramCounter() if counter is None else counter
def fit(self, text, vocabulary_text=None):
"""Trains the model on a text.
:param text: Training text as a sequence of sentences.
"""
if not self.vocab:
if vocabulary_text is None:
raise ValueError(
"Cannot fit without a vocabulary or text to " "create it from."
)
self.vocab.update(vocabulary_text)
self.counts.update(self.vocab.lookup(sent) for sent in text)
def score(self, word, context=None):
"""Masks out of vocab (OOV) words and computes their model score.
For model-specific logic of calculating scores, see the `unmasked_score`
method.
"""
return self.unmasked_score(
self.vocab.lookup(word), self.vocab.lookup(context) if context else None
)
@abstractmethod
def unmasked_score(self, word, context=None):
"""Score a word given some optional context.
Concrete models are expected to provide an implementation.
Note that this method does not mask its arguments with the OOV label.
Use the `score` method for that.
:param str word: Word for which we want the score
:param tuple(str) context: Context the word is in.
If `None`, compute unigram score.
:param context: tuple(str) or None
:rtype: float
"""
raise NotImplementedError()
def logscore(self, word, context=None):
"""Evaluate the log score of this word in this context.
The arguments are the same as for `score` and `unmasked_score`.
"""
return log_base2(self.score(word, context))
def context_counts(self, context):
"""Helper method for retrieving counts for a given context.
Assumes context has been checked and oov words in it masked.
:type context: tuple(str) or None
"""
return (
self.counts[len(context) + 1][context] if context else self.counts.unigrams
)
def entropy(self, text_ngrams):
"""Calculate cross-entropy of model for given evaluation text.
:param Iterable(tuple(str)) text_ngrams: A sequence of ngram tuples.
:rtype: float
"""
return -1 * _mean(
[self.logscore(ngram[-1], ngram[:-1]) for ngram in text_ngrams]
)
def perplexity(self, text_ngrams):
"""Calculates the perplexity of the given text.
This is simply 2 ** cross-entropy for the text, so the arguments are the same.
"""
return pow(2.0, self.entropy(text_ngrams))
def generate(self, num_words=1, text_seed=None, random_seed=None):
"""Generate words from the model.
:param int num_words: How many words to generate. By default 1.
:param text_seed: Generation can be conditioned on preceding context.
:param random_seed: A random seed or an instance of `random.Random`. If provided,
makes the random sampling part of generation reproducible.
:return: One (str) word or a list of words generated from model.
Examples:
>>> from nltk.lm import MLE
>>> lm = MLE(2)
>>> lm.fit([[("a", "b"), ("b", "c")]], vocabulary_text=['a', 'b', 'c'])
>>> lm.fit([[("a",), ("b",), ("c",)]])
>>> lm.generate(random_seed=3)
'a'
>>> lm.generate(text_seed=['a'])
'b'
"""
text_seed = [] if text_seed is None else list(text_seed)
random_generator = _random_generator(random_seed)
# base recursion case
if num_words == 1:
context = (
text_seed[-self.order + 1 :]
if len(text_seed) >= self.order
else text_seed
)
samples = self.context_counts(self.vocab.lookup(context))
while context and not samples:
context = context[1:] if len(context) > 1 else []
samples = self.context_counts(self.vocab.lookup(context))
# sorting achieves two things:
# - reproducible randomness when sampling
# - turning Mapping into Sequence which _weighted_choice expects
samples = sorted(samples)
return _weighted_choice(
samples, tuple(self.score(w, context) for w in samples), random_generator
)
# build up text one word at a time
generated = []
for _ in range(num_words):
generated.append(
self.generate(
num_words=1,
text_seed=text_seed + generated,
random_seed=random_generator,
)
)
return generated