93 lines
2.6 KiB
Python
93 lines
2.6 KiB
Python
|
# -*- coding: utf-8 -*-
|
||
|
from __future__ import print_function, unicode_literals
|
||
|
|
||
|
import unittest
|
||
|
|
||
|
from nltk.corpus import rte as rte_corpus
|
||
|
from nltk.classify.rte_classify import RTEFeatureExtractor, rte_features, rte_classifier
|
||
|
|
||
|
expected_from_rte_feature_extration = """
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 0
|
||
|
ne_overlap => 1
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 3
|
||
|
word_overlap => 3
|
||
|
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 0
|
||
|
ne_overlap => 1
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 2
|
||
|
word_overlap => 1
|
||
|
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 1
|
||
|
ne_overlap => 1
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 1
|
||
|
word_overlap => 2
|
||
|
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 1
|
||
|
ne_overlap => 0
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 6
|
||
|
word_overlap => 2
|
||
|
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 1
|
||
|
ne_overlap => 0
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 4
|
||
|
word_overlap => 0
|
||
|
|
||
|
alwayson => True
|
||
|
ne_hyp_extra => 1
|
||
|
ne_overlap => 0
|
||
|
neg_hyp => 0
|
||
|
neg_txt => 0
|
||
|
word_hyp_extra => 3
|
||
|
word_overlap => 1
|
||
|
"""
|
||
|
|
||
|
|
||
|
class RTEClassifierTest(unittest.TestCase):
|
||
|
# Test the feature extraction method.
|
||
|
def test_rte_feature_extraction(self):
|
||
|
pairs = rte_corpus.pairs(['rte1_dev.xml'])[:6]
|
||
|
test_output = [
|
||
|
"%-15s => %s" % (key, rte_features(pair)[key])
|
||
|
for pair in pairs
|
||
|
for key in sorted(rte_features(pair))
|
||
|
]
|
||
|
expected_output = expected_from_rte_feature_extration.strip().split('\n')
|
||
|
# Remove null strings.
|
||
|
expected_output = list(filter(None, expected_output))
|
||
|
self.assertEqual(test_output, expected_output)
|
||
|
|
||
|
# Test the RTEFeatureExtractor object.
|
||
|
def test_feature_extractor_object(self):
|
||
|
rtepair = rte_corpus.pairs(['rte3_dev.xml'])[33]
|
||
|
extractor = RTEFeatureExtractor(rtepair)
|
||
|
self.assertEqual(extractor.hyp_words, {'member', 'China', 'SCO.'})
|
||
|
self.assertEqual(extractor.overlap('word'), set())
|
||
|
self.assertEqual(extractor.overlap('ne'), {'China'})
|
||
|
self.assertEqual(extractor.hyp_extra('word'), {'member'})
|
||
|
|
||
|
# Test the RTE classifier training.
|
||
|
def test_rte_classification_without_megam(self):
|
||
|
clf = rte_classifier('IIS')
|
||
|
clf = rte_classifier('GIS')
|
||
|
|
||
|
@unittest.skip("Skipping tests with dependencies on MEGAM")
|
||
|
def test_rte_classification_with_megam(self):
|
||
|
nltk.config_megam('/usr/local/bin/megam')
|
||
|
clf = rte_classifier('megam')
|
||
|
clf = rte_classifier('BFGS')
|