381 lines
11 KiB
Python
381 lines
11 KiB
Python
# ===================================================================
|
|
#
|
|
# Copyright (c) 2014, Legrandin <helderijs@gmail.com>
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions
|
|
# are met:
|
|
#
|
|
# 1. Redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer.
|
|
# 2. Redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in
|
|
# the documentation and/or other materials provided with the
|
|
# distribution.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
# COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
# POSSIBILITY OF SUCH DAMAGE.
|
|
# ===================================================================
|
|
|
|
from ._IntegerBase import IntegerBase
|
|
|
|
from Crypto.Util.number import long_to_bytes, bytes_to_long
|
|
|
|
|
|
class IntegerNative(IntegerBase):
|
|
"""A class to model a natural integer (including zero)"""
|
|
|
|
def __init__(self, value):
|
|
if isinstance(value, float):
|
|
raise ValueError("A floating point type is not a natural number")
|
|
try:
|
|
self._value = value._value
|
|
except AttributeError:
|
|
self._value = value
|
|
|
|
# Conversions
|
|
def __int__(self):
|
|
return self._value
|
|
|
|
def __str__(self):
|
|
return str(int(self))
|
|
|
|
def __repr__(self):
|
|
return "Integer(%s)" % str(self)
|
|
|
|
# Only Python 2.x
|
|
def __hex__(self):
|
|
return hex(self._value)
|
|
|
|
# Only Python 3.x
|
|
def __index__(self):
|
|
return int(self._value)
|
|
|
|
def to_bytes(self, block_size=0):
|
|
if self._value < 0:
|
|
raise ValueError("Conversion only valid for non-negative numbers")
|
|
result = long_to_bytes(self._value, block_size)
|
|
if len(result) > block_size > 0:
|
|
raise ValueError("Value too large to encode")
|
|
return result
|
|
|
|
@classmethod
|
|
def from_bytes(cls, byte_string):
|
|
return cls(bytes_to_long(byte_string))
|
|
|
|
# Relations
|
|
def __eq__(self, term):
|
|
if term is None:
|
|
return False
|
|
return self._value == int(term)
|
|
|
|
def __ne__(self, term):
|
|
return not self.__eq__(term)
|
|
|
|
def __lt__(self, term):
|
|
return self._value < int(term)
|
|
|
|
def __le__(self, term):
|
|
return self.__lt__(term) or self.__eq__(term)
|
|
|
|
def __gt__(self, term):
|
|
return not self.__le__(term)
|
|
|
|
def __ge__(self, term):
|
|
return not self.__lt__(term)
|
|
|
|
def __nonzero__(self):
|
|
return self._value != 0
|
|
__bool__ = __nonzero__
|
|
|
|
def is_negative(self):
|
|
return self._value < 0
|
|
|
|
# Arithmetic operations
|
|
def __add__(self, term):
|
|
try:
|
|
return self.__class__(self._value + int(term))
|
|
except (ValueError, AttributeError, TypeError):
|
|
return NotImplemented
|
|
|
|
def __sub__(self, term):
|
|
try:
|
|
return self.__class__(self._value - int(term))
|
|
except (ValueError, AttributeError, TypeError):
|
|
return NotImplemented
|
|
|
|
def __mul__(self, factor):
|
|
try:
|
|
return self.__class__(self._value * int(factor))
|
|
except (ValueError, AttributeError, TypeError):
|
|
return NotImplemented
|
|
|
|
def __floordiv__(self, divisor):
|
|
return self.__class__(self._value // int(divisor))
|
|
|
|
def __mod__(self, divisor):
|
|
divisor_value = int(divisor)
|
|
if divisor_value < 0:
|
|
raise ValueError("Modulus must be positive")
|
|
return self.__class__(self._value % divisor_value)
|
|
|
|
def inplace_pow(self, exponent, modulus=None):
|
|
exp_value = int(exponent)
|
|
if exp_value < 0:
|
|
raise ValueError("Exponent must not be negative")
|
|
|
|
if modulus is not None:
|
|
mod_value = int(modulus)
|
|
if mod_value < 0:
|
|
raise ValueError("Modulus must be positive")
|
|
if mod_value == 0:
|
|
raise ZeroDivisionError("Modulus cannot be zero")
|
|
else:
|
|
mod_value = None
|
|
self._value = pow(self._value, exp_value, mod_value)
|
|
return self
|
|
|
|
def __pow__(self, exponent, modulus=None):
|
|
result = self.__class__(self)
|
|
return result.inplace_pow(exponent, modulus)
|
|
|
|
def __abs__(self):
|
|
return abs(self._value)
|
|
|
|
def sqrt(self, modulus=None):
|
|
|
|
value = self._value
|
|
if modulus is None:
|
|
if value < 0:
|
|
raise ValueError("Square root of negative value")
|
|
# http://stackoverflow.com/questions/15390807/integer-square-root-in-python
|
|
|
|
x = value
|
|
y = (x + 1) // 2
|
|
while y < x:
|
|
x = y
|
|
y = (x + value // x) // 2
|
|
result = x
|
|
else:
|
|
if modulus <= 0:
|
|
raise ValueError("Modulus must be positive")
|
|
result = self._tonelli_shanks(self % modulus, modulus)
|
|
|
|
return self.__class__(result)
|
|
|
|
def __iadd__(self, term):
|
|
self._value += int(term)
|
|
return self
|
|
|
|
def __isub__(self, term):
|
|
self._value -= int(term)
|
|
return self
|
|
|
|
def __imul__(self, term):
|
|
self._value *= int(term)
|
|
return self
|
|
|
|
def __imod__(self, term):
|
|
modulus = int(term)
|
|
if modulus == 0:
|
|
raise ZeroDivisionError("Division by zero")
|
|
if modulus < 0:
|
|
raise ValueError("Modulus must be positive")
|
|
self._value %= modulus
|
|
return self
|
|
|
|
# Boolean/bit operations
|
|
def __and__(self, term):
|
|
return self.__class__(self._value & int(term))
|
|
|
|
def __or__(self, term):
|
|
return self.__class__(self._value | int(term))
|
|
|
|
def __rshift__(self, pos):
|
|
try:
|
|
return self.__class__(self._value >> int(pos))
|
|
except OverflowError:
|
|
if self._value >= 0:
|
|
return 0
|
|
else:
|
|
return -1
|
|
|
|
def __irshift__(self, pos):
|
|
try:
|
|
self._value >>= int(pos)
|
|
except OverflowError:
|
|
if self._value >= 0:
|
|
return 0
|
|
else:
|
|
return -1
|
|
return self
|
|
|
|
def __lshift__(self, pos):
|
|
try:
|
|
return self.__class__(self._value << int(pos))
|
|
except OverflowError:
|
|
raise ValueError("Incorrect shift count")
|
|
|
|
def __ilshift__(self, pos):
|
|
try:
|
|
self._value <<= int(pos)
|
|
except OverflowError:
|
|
raise ValueError("Incorrect shift count")
|
|
return self
|
|
|
|
def get_bit(self, n):
|
|
if self._value < 0:
|
|
raise ValueError("no bit representation for negative values")
|
|
try:
|
|
try:
|
|
result = (self._value >> n._value) & 1
|
|
if n._value < 0:
|
|
raise ValueError("negative bit count")
|
|
except AttributeError:
|
|
result = (self._value >> n) & 1
|
|
if n < 0:
|
|
raise ValueError("negative bit count")
|
|
except OverflowError:
|
|
result = 0
|
|
return result
|
|
|
|
# Extra
|
|
def is_odd(self):
|
|
return (self._value & 1) == 1
|
|
|
|
def is_even(self):
|
|
return (self._value & 1) == 0
|
|
|
|
def size_in_bits(self):
|
|
|
|
if self._value < 0:
|
|
raise ValueError("Conversion only valid for non-negative numbers")
|
|
|
|
if self._value == 0:
|
|
return 1
|
|
|
|
bit_size = 0
|
|
tmp = self._value
|
|
while tmp:
|
|
tmp >>= 1
|
|
bit_size += 1
|
|
|
|
return bit_size
|
|
|
|
def size_in_bytes(self):
|
|
return (self.size_in_bits() - 1) // 8 + 1
|
|
|
|
def is_perfect_square(self):
|
|
if self._value < 0:
|
|
return False
|
|
if self._value in (0, 1):
|
|
return True
|
|
|
|
x = self._value // 2
|
|
square_x = x ** 2
|
|
|
|
while square_x > self._value:
|
|
x = (square_x + self._value) // (2 * x)
|
|
square_x = x ** 2
|
|
|
|
return self._value == x ** 2
|
|
|
|
def fail_if_divisible_by(self, small_prime):
|
|
if (self._value % int(small_prime)) == 0:
|
|
raise ValueError("Value is composite")
|
|
|
|
def multiply_accumulate(self, a, b):
|
|
self._value += int(a) * int(b)
|
|
return self
|
|
|
|
def set(self, source):
|
|
self._value = int(source)
|
|
|
|
def inplace_inverse(self, modulus):
|
|
modulus = int(modulus)
|
|
if modulus == 0:
|
|
raise ZeroDivisionError("Modulus cannot be zero")
|
|
if modulus < 0:
|
|
raise ValueError("Modulus cannot be negative")
|
|
r_p, r_n = self._value, modulus
|
|
s_p, s_n = 1, 0
|
|
while r_n > 0:
|
|
q = r_p // r_n
|
|
r_p, r_n = r_n, r_p - q * r_n
|
|
s_p, s_n = s_n, s_p - q * s_n
|
|
if r_p != 1:
|
|
raise ValueError("No inverse value can be computed" + str(r_p))
|
|
while s_p < 0:
|
|
s_p += modulus
|
|
self._value = s_p
|
|
return self
|
|
|
|
def inverse(self, modulus):
|
|
result = self.__class__(self)
|
|
result.inplace_inverse(modulus)
|
|
return result
|
|
|
|
def gcd(self, term):
|
|
r_p, r_n = abs(self._value), abs(int(term))
|
|
while r_n > 0:
|
|
q = r_p // r_n
|
|
r_p, r_n = r_n, r_p - q * r_n
|
|
return self.__class__(r_p)
|
|
|
|
def lcm(self, term):
|
|
term = int(term)
|
|
if self._value == 0 or term == 0:
|
|
return self.__class__(0)
|
|
return self.__class__(abs((self._value * term) // self.gcd(term)._value))
|
|
|
|
@staticmethod
|
|
def jacobi_symbol(a, n):
|
|
a = int(a)
|
|
n = int(n)
|
|
|
|
if n <= 0:
|
|
raise ValueError("n must be a positive integer")
|
|
|
|
if (n & 1) == 0:
|
|
raise ValueError("n must be even for the Jacobi symbol")
|
|
|
|
# Step 1
|
|
a = a % n
|
|
# Step 2
|
|
if a == 1 or n == 1:
|
|
return 1
|
|
# Step 3
|
|
if a == 0:
|
|
return 0
|
|
# Step 4
|
|
e = 0
|
|
a1 = a
|
|
while (a1 & 1) == 0:
|
|
a1 >>= 1
|
|
e += 1
|
|
# Step 5
|
|
if (e & 1) == 0:
|
|
s = 1
|
|
elif n % 8 in (1, 7):
|
|
s = 1
|
|
else:
|
|
s = -1
|
|
# Step 6
|
|
if n % 4 == 3 and a1 % 4 == 3:
|
|
s = -s
|
|
# Step 7
|
|
n1 = n % a1
|
|
# Step 8
|
|
return s * IntegerNative.jacobi_symbol(n1, a1)
|