PCQRSCANER/venv/Lib/site-packages/nltk/test/unit/test_rte_classify.py
2019-12-22 21:51:47 +01:00

93 lines
2.6 KiB
Python

# -*- coding: utf-8 -*-
from __future__ import print_function, unicode_literals
import unittest
from nltk.corpus import rte as rte_corpus
from nltk.classify.rte_classify import RTEFeatureExtractor, rte_features, rte_classifier
expected_from_rte_feature_extration = """
alwayson => True
ne_hyp_extra => 0
ne_overlap => 1
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 3
word_overlap => 3
alwayson => True
ne_hyp_extra => 0
ne_overlap => 1
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 2
word_overlap => 1
alwayson => True
ne_hyp_extra => 1
ne_overlap => 1
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 1
word_overlap => 2
alwayson => True
ne_hyp_extra => 1
ne_overlap => 0
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 6
word_overlap => 2
alwayson => True
ne_hyp_extra => 1
ne_overlap => 0
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 4
word_overlap => 0
alwayson => True
ne_hyp_extra => 1
ne_overlap => 0
neg_hyp => 0
neg_txt => 0
word_hyp_extra => 3
word_overlap => 1
"""
class RTEClassifierTest(unittest.TestCase):
# Test the feature extraction method.
def test_rte_feature_extraction(self):
pairs = rte_corpus.pairs(['rte1_dev.xml'])[:6]
test_output = [
"%-15s => %s" % (key, rte_features(pair)[key])
for pair in pairs
for key in sorted(rte_features(pair))
]
expected_output = expected_from_rte_feature_extration.strip().split('\n')
# Remove null strings.
expected_output = list(filter(None, expected_output))
self.assertEqual(test_output, expected_output)
# Test the RTEFeatureExtractor object.
def test_feature_extractor_object(self):
rtepair = rte_corpus.pairs(['rte3_dev.xml'])[33]
extractor = RTEFeatureExtractor(rtepair)
self.assertEqual(extractor.hyp_words, {'member', 'China', 'SCO.'})
self.assertEqual(extractor.overlap('word'), set())
self.assertEqual(extractor.overlap('ne'), {'China'})
self.assertEqual(extractor.hyp_extra('word'), {'member'})
# Test the RTE classifier training.
def test_rte_classification_without_megam(self):
clf = rte_classifier('IIS')
clf = rte_classifier('GIS')
@unittest.skip("Skipping tests with dependencies on MEGAM")
def test_rte_classification_with_megam(self):
nltk.config_megam('/usr/local/bin/megam')
clf = rte_classifier('megam')
clf = rte_classifier('BFGS')