PCQRSCANER/venv/Lib/site-packages/nltk/test/data.doctest
2019-12-22 21:51:47 +01:00

380 lines
14 KiB
Plaintext

.. Copyright (C) 2001-2019 NLTK Project
.. For license information, see LICENSE.TXT
=========================================
Loading Resources From the Data Package
=========================================
>>> import nltk.data
Overview
~~~~~~~~
The `nltk.data` module contains functions that can be used to load
NLTK resource files, such as corpora, grammars, and saved processing
objects.
Loading Data Files
~~~~~~~~~~~~~~~~~~
Resources are loaded using the function `nltk.data.load()`, which
takes as its first argument a URL specifying what file should be
loaded. The ``nltk:`` protocol loads files from the NLTK data
distribution:
>>> from __future__ import print_function
>>> tokenizer = nltk.data.load('nltk:tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize('Hello. This is a test. It works!')
['Hello.', 'This is a test.', 'It works!']
It is important to note that there should be no space following the
colon (':') in the URL; 'nltk: tokenizers/punkt/english.pickle' will
not work!
The ``nltk:`` protocol is used by default if no protocol is specified:
>>> nltk.data.load('tokenizers/punkt/english.pickle') # doctest: +ELLIPSIS
<nltk.tokenize.punkt.PunktSentenceTokenizer object at ...>
But it is also possible to load resources from ``http:``, ``ftp:``,
and ``file:`` URLs, e.g. ``cfg = nltk.data.load('http://example.com/path/to/toy.cfg')``
>>> # Load a grammar using an absolute path.
>>> url = 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg')
>>> url.replace('\\', '/') # doctest: +ELLIPSIS
'file:...toy.cfg'
>>> print(nltk.data.load(url)) # doctest: +ELLIPSIS
Grammar with 14 productions (start state = S)
S -> NP VP
PP -> P NP
...
P -> 'on'
P -> 'in'
The second argument to the `nltk.data.load()` function specifies the
file format, which determines how the file's contents are processed
before they are returned by ``load()``. The formats that are
currently supported by the data module are described by the dictionary
`nltk.data.FORMATS`:
>>> for format, descr in sorted(nltk.data.FORMATS.items()):
... print('{0:<7} {1:}'.format(format, descr)) # doctest: +NORMALIZE_WHITESPACE
cfg A context free grammar.
fcfg A feature CFG.
fol A list of first order logic expressions, parsed with
nltk.sem.logic.Expression.fromstring.
json A serialized python object, stored using the json module.
logic A list of first order logic expressions, parsed with
nltk.sem.logic.LogicParser. Requires an additional logic_parser
parameter
pcfg A probabilistic CFG.
pickle A serialized python object, stored using the pickle
module.
raw The raw (byte string) contents of a file.
text The raw (unicode string) contents of a file.
val A semantic valuation, parsed by
nltk.sem.Valuation.fromstring.
yaml A serialized python object, stored using the yaml module.
`nltk.data.load()` will raise a ValueError if a bad format name is
specified:
>>> nltk.data.load('grammars/sample_grammars/toy.cfg', 'bar')
Traceback (most recent call last):
. . .
ValueError: Unknown format type!
By default, the ``"auto"`` format is used, which chooses a format
based on the filename's extension. The mapping from file extensions
to format names is specified by `nltk.data.AUTO_FORMATS`:
>>> for ext, format in sorted(nltk.data.AUTO_FORMATS.items()):
... print('.%-7s -> %s' % (ext, format))
.cfg -> cfg
.fcfg -> fcfg
.fol -> fol
.json -> json
.logic -> logic
.pcfg -> pcfg
.pickle -> pickle
.text -> text
.txt -> text
.val -> val
.yaml -> yaml
If `nltk.data.load()` is unable to determine the format based on the
filename's extension, it will raise a ValueError:
>>> nltk.data.load('foo.bar')
Traceback (most recent call last):
. . .
ValueError: Could not determine format for foo.bar based on its file
extension; use the "format" argument to specify the format explicitly.
Note that by explicitly specifying the ``format`` argument, you can
override the load method's default processing behavior. For example,
to get the raw contents of any file, simply use ``format="raw"``:
>>> s = nltk.data.load('grammars/sample_grammars/toy.cfg', 'text')
>>> print(s) # doctest: +ELLIPSIS
S -> NP VP
PP -> P NP
NP -> Det N | NP PP
VP -> V NP | VP PP
...
Making Local Copies
~~~~~~~~~~~~~~~~~~~
.. This will not be visible in the html output: create a tempdir to
play in.
>>> import tempfile, os
>>> tempdir = tempfile.mkdtemp()
>>> old_dir = os.path.abspath('.')
>>> os.chdir(tempdir)
The function `nltk.data.retrieve()` copies a given resource to a local
file. This can be useful, for example, if you want to edit one of the
sample grammars.
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg')
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy.cfg'
>>> # Simulate editing the grammar.
>>> with open('toy.cfg') as inp:
... s = inp.read().replace('NP', 'DP')
>>> with open('toy.cfg', 'w') as out:
... _bytes_written = out.write(s)
>>> # Load the edited grammar, & display it.
>>> cfg = nltk.data.load('file:///' + os.path.abspath('toy.cfg'))
>>> print(cfg) # doctest: +ELLIPSIS
Grammar with 14 productions (start state = S)
S -> DP VP
PP -> P DP
...
P -> 'on'
P -> 'in'
The second argument to `nltk.data.retrieve()` specifies the filename
for the new copy of the file. By default, the source file's filename
is used.
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg', 'mytoy.cfg')
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'mytoy.cfg'
>>> os.path.isfile('./mytoy.cfg')
True
>>> nltk.data.retrieve('grammars/sample_grammars/np.fcfg')
Retrieving 'nltk:grammars/sample_grammars/np.fcfg', saving to 'np.fcfg'
>>> os.path.isfile('./np.fcfg')
True
If a file with the specified (or default) filename already exists in
the current directory, then `nltk.data.retrieve()` will raise a
ValueError exception. It will *not* overwrite the file:
>>> os.path.isfile('./toy.cfg')
True
>>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg') # doctest: +ELLIPSIS
Traceback (most recent call last):
. . .
ValueError: File '...toy.cfg' already exists!
.. This will not be visible in the html output: clean up the tempdir.
>>> os.chdir(old_dir)
>>> for f in os.listdir(tempdir):
... os.remove(os.path.join(tempdir, f))
>>> os.rmdir(tempdir)
Finding Files in the NLTK Data Package
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The `nltk.data.find()` function searches the NLTK data package for a
given file, and returns a pointer to that file. This pointer can
either be a `FileSystemPathPointer` (whose `path` attribute gives the
absolute path of the file); or a `ZipFilePathPointer`, specifying a
zipfile and the name of an entry within that zipfile. Both pointer
types define the `open()` method, which can be used to read the string
contents of the file.
>>> path = nltk.data.find('corpora/abc/rural.txt')
>>> str(path) # doctest: +ELLIPSIS
'...rural.txt'
>>> print(path.open().read(60).decode())
PM denies knowledge of AWB kickbacks
The Prime Minister has
Alternatively, the `nltk.data.load()` function can be used with the
keyword argument ``format="raw"``:
>>> s = nltk.data.load('corpora/abc/rural.txt', format='raw')[:60]
>>> print(s.decode())
PM denies knowledge of AWB kickbacks
The Prime Minister has
Alternatively, you can use the keyword argument ``format="text"``:
>>> s = nltk.data.load('corpora/abc/rural.txt', format='text')[:60]
>>> print(s)
PM denies knowledge of AWB kickbacks
The Prime Minister has
Resource Caching
~~~~~~~~~~~~~~~~
NLTK uses a weakref dictionary to maintain a cache of resources that
have been loaded. If you load a resource that is already stored in
the cache, then the cached copy will be returned. This behavior can
be seen by the trace output generated when verbose=True:
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
<<Loading nltk:grammars/book_grammars/feat0.fcfg>>
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
<<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
If you wish to load a resource from its source, bypassing the cache,
use the ``cache=False`` argument to `nltk.data.load()`. This can be
useful, for example, if the resource is loaded from a local file, and
you are actively editing that file:
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',cache=False,verbose=True)
<<Loading nltk:grammars/book_grammars/feat0.fcfg>>
The cache *no longer* uses weak references. A resource will not be
automatically expunged from the cache when no more objects are using
it. In the following example, when we clear the variable ``feat0``,
the reference count for the feature grammar object drops to zero.
However, the object remains cached:
>>> del feat0
>>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',
... verbose=True)
<<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
You can clear the entire contents of the cache, using
`nltk.data.clear_cache()`:
>>> nltk.data.clear_cache()
Retrieving other Data Sources
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
>>> formulas = nltk.data.load('grammars/book_grammars/background.fol')
>>> for f in formulas: print(str(f))
all x.(boxerdog(x) -> dog(x))
all x.(boxer(x) -> person(x))
all x.-(dog(x) & person(x))
all x.(married(x) <-> exists y.marry(x,y))
all x.(bark(x) -> dog(x))
all x y.(marry(x,y) -> (person(x) & person(y)))
-(Vincent = Mia)
-(Vincent = Fido)
-(Mia = Fido)
Regression Tests
~~~~~~~~~~~~~~~~
Create a temp dir for tests that write files:
>>> import tempfile, os
>>> tempdir = tempfile.mkdtemp()
>>> old_dir = os.path.abspath('.')
>>> os.chdir(tempdir)
The `retrieve()` function accepts all url types:
>>> urls = ['https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg',
... 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg'),
... 'nltk:grammars/sample_grammars/toy.cfg',
... 'grammars/sample_grammars/toy.cfg']
>>> for i, url in enumerate(urls):
... nltk.data.retrieve(url, 'toy-%d.cfg' % i) # doctest: +ELLIPSIS
Retrieving 'https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg', saving to 'toy-0.cfg'
Retrieving 'file:...toy.cfg', saving to 'toy-1.cfg'
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-2.cfg'
Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-3.cfg'
Clean up the temp dir:
>>> os.chdir(old_dir)
>>> for f in os.listdir(tempdir):
... os.remove(os.path.join(tempdir, f))
>>> os.rmdir(tempdir)
Lazy Loader
-----------
A lazy loader is a wrapper object that defers loading a resource until
it is accessed or used in any way. This is mainly intended for
internal use by NLTK's corpus readers.
>>> # Create a lazy loader for toy.cfg.
>>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
>>> # Show that it's not loaded yet:
>>> object.__repr__(ll) # doctest: +ELLIPSIS
'<nltk.data.LazyLoader object at ...>'
>>> # printing it is enough to cause it to be loaded:
>>> print(ll)
<Grammar with 14 productions>
>>> # Show that it's now been loaded:
>>> object.__repr__(ll) # doctest: +ELLIPSIS
'<nltk.grammar.CFG object at ...>'
>>> # Test that accessing an attribute also loads it:
>>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
>>> ll.start()
S
>>> object.__repr__(ll) # doctest: +ELLIPSIS
'<nltk.grammar.CFG object at ...>'
Buffered Gzip Reading and Writing
---------------------------------
Write performance to gzip-compressed is extremely poor when the files become large.
File creation can become a bottleneck in those cases.
Read performance from large gzipped pickle files was improved in data.py by
buffering the reads. A similar fix can be applied to writes by buffering
the writes to a StringIO object first.
This is mainly intended for internal use. The test simply tests that reading
and writing work as intended and does not test how much improvement buffering
provides.
>>> from nltk.compat import StringIO
>>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'wb', size=2**10)
>>> ans = []
>>> for i in range(10000):
... ans.append(str(i).encode('ascii'))
... test.write(str(i).encode('ascii'))
>>> test.close()
>>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'rb')
>>> test.read() == b''.join(ans)
True
>>> test.close()
>>> import os
>>> os.unlink('testbuf.gz')
JSON Encoding and Decoding
--------------------------
JSON serialization is used instead of pickle for some classes.
>>> from nltk import jsontags
>>> from nltk.jsontags import JSONTaggedEncoder, JSONTaggedDecoder, register_tag
>>> @jsontags.register_tag
... class JSONSerializable:
... json_tag = 'JSONSerializable'
...
... def __init__(self, n):
... self.n = n
...
... def encode_json_obj(self):
... return self.n
...
... @classmethod
... def decode_json_obj(cls, obj):
... n = obj
... return cls(n)
...
>>> JSONTaggedEncoder().encode(JSONSerializable(1))
'{"!JSONSerializable": 1}'
>>> JSONTaggedDecoder().decode('{"!JSONSerializable": 1}').n
1