PCQRSCANER/venv/Lib/site-packages/nltk/test/discourse.doctest
2019-12-22 21:51:47 +01:00

547 lines
17 KiB
Plaintext

.. Copyright (C) 2001-2019 NLTK Project
.. For license information, see LICENSE.TXT
==================
Discourse Checking
==================
>>> from nltk import *
>>> from nltk.sem import logic
>>> logic._counter._value = 0
Introduction
============
The NLTK discourse module makes it possible to test consistency and
redundancy of simple discourses, using theorem-proving and
model-building from `nltk.inference`.
The ``DiscourseTester`` constructor takes a list of sentences as a
parameter.
>>> dt = DiscourseTester(['a boxer walks', 'every boxer chases a girl'])
The ``DiscourseTester`` parses each sentence into a list of logical
forms. Once we have created ``DiscourseTester`` object, we can
inspect various properties of the discourse. First off, we might want
to double-check what sentences are currently stored as the discourse.
>>> dt.sentences()
s0: a boxer walks
s1: every boxer chases a girl
As you will see, each sentence receives an identifier `s`\ :subscript:`i`.
We might also want to check what grammar the ``DiscourseTester`` is
using (by default, ``book_grammars/discourse.fcfg``):
>>> dt.grammar() # doctest: +ELLIPSIS
% start S
# Grammar Rules
S[SEM = <app(?subj,?vp)>] -> NP[NUM=?n,SEM=?subj] VP[NUM=?n,SEM=?vp]
NP[NUM=?n,SEM=<app(?det,?nom)> ] -> Det[NUM=?n,SEM=?det] Nom[NUM=?n,SEM=?nom]
NP[LOC=?l,NUM=?n,SEM=?np] -> PropN[LOC=?l,NUM=?n,SEM=?np]
...
A different grammar can be invoked by using the optional ``gramfile``
parameter when a ``DiscourseTester`` object is created.
Readings and Threads
====================
Depending on
the grammar used, we may find some sentences have more than one
logical form. To check this, use the ``readings()`` method. Given a
sentence identifier of the form `s`\ :subscript:`i`, each reading of
that sentence is given an identifier `s`\ :sub:`i`-`r`\ :sub:`j`.
>>> dt.readings()
<BLANKLINE>
s0 readings:
<BLANKLINE>
s0-r0: exists z1.(boxer(z1) & walk(z1))
s0-r1: exists z1.(boxerdog(z1) & walk(z1))
<BLANKLINE>
s1 readings:
<BLANKLINE>
s1-r0: all z2.(boxer(z2) -> exists z3.(girl(z3) & chase(z2,z3)))
s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
In this case, the only source of ambiguity lies in the word *boxer*,
which receives two translations: ``boxer`` and ``boxerdog``. The
intention is that one of these corresponds to the ``person`` sense and
one to the ``dog`` sense. In principle, we would also expect to see a
quantifier scope ambiguity in ``s1``. However, the simple grammar we
are using, namely `sem4.fcfg <sem4.fcfg>`_, doesn't support quantifier
scope ambiguity.
We can also investigate the readings of a specific sentence:
>>> dt.readings('a boxer walks')
The sentence 'a boxer walks' has these readings:
exists x.(boxer(x) & walk(x))
exists x.(boxerdog(x) & walk(x))
Given that each sentence is two-ways ambiguous, we potentially have
four different discourse 'threads', taking all combinations of
readings. To see these, specify the ``threaded=True`` parameter on
the ``readings()`` method. Again, each thread is assigned an
identifier of the form `d`\ :sub:`i`. Following the identifier is a
list of the readings that constitute that thread.
>>> dt.readings(threaded=True) # doctest: +NORMALIZE_WHITESPACE
d0: ['s0-r0', 's1-r0']
d1: ['s0-r0', 's1-r1']
d2: ['s0-r1', 's1-r0']
d3: ['s0-r1', 's1-r1']
Of course, this simple-minded approach doesn't scale: a discourse with, say, three
sentences, each of which has 3 readings, will generate 27 different
threads. It is an interesting exercise to consider how to manage
discourse ambiguity more efficiently.
Checking Consistency
====================
Now, we can check whether some or all of the discourse threads are
consistent, using the ``models()`` method. With no parameter, this
method will try to find a model for every discourse thread in the
current discourse. However, we can also specify just one thread, say ``d1``.
>>> dt.models('d1')
--------------------------------------------------------------------------------
Model for Discourse Thread d1
--------------------------------------------------------------------------------
% number = 1
% seconds = 0
<BLANKLINE>
% Interpretation of size 2
<BLANKLINE>
c1 = 0.
<BLANKLINE>
f1(0) = 0.
f1(1) = 0.
<BLANKLINE>
boxer(0).
- boxer(1).
<BLANKLINE>
- boxerdog(0).
- boxerdog(1).
<BLANKLINE>
- girl(0).
- girl(1).
<BLANKLINE>
walk(0).
- walk(1).
<BLANKLINE>
- chase(0,0).
- chase(0,1).
- chase(1,0).
- chase(1,1).
<BLANKLINE>
Consistent discourse: d1 ['s0-r0', 's1-r1']:
s0-r0: exists z1.(boxer(z1) & walk(z1))
s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
<BLANKLINE>
There are various formats for rendering **Mace4** models --- here,
we have used the 'cooked' format (which is intended to be
human-readable). There are a number of points to note.
#. The entities in the domain are all treated as non-negative
integers. In this case, there are only two entities, ``0`` and
``1``.
#. The ``-`` symbol indicates negation. So ``0`` is the only
``boxerdog`` and the only thing that ``walk``\ s. Nothing is a
``boxer``, or a ``girl`` or in the ``chase`` relation. Thus the
universal sentence is vacuously true.
#. ``c1`` is an introduced constant that denotes ``0``.
#. ``f1`` is a Skolem function, but it plays no significant role in
this model.
We might want to now add another sentence to the discourse, and there
is method ``add_sentence()`` for doing just this.
>>> dt.add_sentence('John is a boxer')
>>> dt.sentences()
s0: a boxer walks
s1: every boxer chases a girl
s2: John is a boxer
We can now test all the properties as before; here, we just show a
couple of them.
>>> dt.readings()
<BLANKLINE>
s0 readings:
<BLANKLINE>
s0-r0: exists z1.(boxer(z1) & walk(z1))
s0-r1: exists z1.(boxerdog(z1) & walk(z1))
<BLANKLINE>
s1 readings:
<BLANKLINE>
s1-r0: all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
<BLANKLINE>
s2 readings:
<BLANKLINE>
s2-r0: boxer(John)
s2-r1: boxerdog(John)
>>> dt.readings(threaded=True) # doctest: +NORMALIZE_WHITESPACE
d0: ['s0-r0', 's1-r0', 's2-r0']
d1: ['s0-r0', 's1-r0', 's2-r1']
d2: ['s0-r0', 's1-r1', 's2-r0']
d3: ['s0-r0', 's1-r1', 's2-r1']
d4: ['s0-r1', 's1-r0', 's2-r0']
d5: ['s0-r1', 's1-r0', 's2-r1']
d6: ['s0-r1', 's1-r1', 's2-r0']
d7: ['s0-r1', 's1-r1', 's2-r1']
If you are interested in a particular thread, the ``expand_threads()``
method will remind you of what readings it consists of:
>>> thread = dt.expand_threads('d1')
>>> for rid, reading in thread:
... print(rid, str(reading.normalize()))
s0-r0 exists z1.(boxer(z1) & walk(z1))
s1-r0 all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
s2-r1 boxerdog(John)
Suppose we have already defined a discourse, as follows:
>>> dt = DiscourseTester(['A student dances', 'Every student is a person'])
Now, when we add a new sentence, is it consistent with what we already
have? The `` consistchk=True`` parameter of ``add_sentence()`` allows
us to check:
>>> dt.add_sentence('No person dances', consistchk=True)
Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
s0-r0: exists z1.(student(z1) & dance(z1))
s1-r0: all z1.(student(z1) -> person(z1))
s2-r0: -exists z1.(person(z1) & dance(z1))
<BLANKLINE>
>>> dt.readings()
<BLANKLINE>
s0 readings:
<BLANKLINE>
s0-r0: exists z1.(student(z1) & dance(z1))
<BLANKLINE>
s1 readings:
<BLANKLINE>
s1-r0: all z1.(student(z1) -> person(z1))
<BLANKLINE>
s2 readings:
<BLANKLINE>
s2-r0: -exists z1.(person(z1) & dance(z1))
So let's retract the inconsistent sentence:
>>> dt.retract_sentence('No person dances', verbose=True) # doctest: +NORMALIZE_WHITESPACE
Current sentences are
s0: A student dances
s1: Every student is a person
We can now verify that result is consistent.
>>> dt.models()
--------------------------------------------------------------------------------
Model for Discourse Thread d0
--------------------------------------------------------------------------------
% number = 1
% seconds = 0
<BLANKLINE>
% Interpretation of size 2
<BLANKLINE>
c1 = 0.
<BLANKLINE>
dance(0).
- dance(1).
<BLANKLINE>
person(0).
- person(1).
<BLANKLINE>
student(0).
- student(1).
<BLANKLINE>
Consistent discourse: d0 ['s0-r0', 's1-r0']:
s0-r0: exists z1.(student(z1) & dance(z1))
s1-r0: all z1.(student(z1) -> person(z1))
<BLANKLINE>
Checking Informativity
======================
Let's assume that we are still trying to extend the discourse *A
student dances.* *Every student is a person.* We add a new sentence,
but this time, we check whether it is informative with respect to what
has gone before.
>>> dt.add_sentence('A person dances', informchk=True)
Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
Not informative relative to thread 'd0'
In fact, we are just checking whether the new sentence is entailed by
the preceding discourse.
>>> dt.models()
--------------------------------------------------------------------------------
Model for Discourse Thread d0
--------------------------------------------------------------------------------
% number = 1
% seconds = 0
<BLANKLINE>
% Interpretation of size 2
<BLANKLINE>
c1 = 0.
<BLANKLINE>
c2 = 0.
<BLANKLINE>
dance(0).
- dance(1).
<BLANKLINE>
person(0).
- person(1).
<BLANKLINE>
student(0).
- student(1).
<BLANKLINE>
Consistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
s0-r0: exists z1.(student(z1) & dance(z1))
s1-r0: all z1.(student(z1) -> person(z1))
s2-r0: exists z1.(person(z1) & dance(z1))
<BLANKLINE>
Adding Background Knowledge
===========================
Let's build a new discourse, and look at the readings of the component sentences:
>>> dt = DiscourseTester(['Vincent is a boxer', 'Fido is a boxer', 'Vincent is married', 'Fido barks'])
>>> dt.readings()
<BLANKLINE>
s0 readings:
<BLANKLINE>
s0-r0: boxer(Vincent)
s0-r1: boxerdog(Vincent)
<BLANKLINE>
s1 readings:
<BLANKLINE>
s1-r0: boxer(Fido)
s1-r1: boxerdog(Fido)
<BLANKLINE>
s2 readings:
<BLANKLINE>
s2-r0: married(Vincent)
<BLANKLINE>
s3 readings:
<BLANKLINE>
s3-r0: bark(Fido)
This gives us a lot of threads:
>>> dt.readings(threaded=True) # doctest: +NORMALIZE_WHITESPACE
d0: ['s0-r0', 's1-r0', 's2-r0', 's3-r0']
d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
d2: ['s0-r1', 's1-r0', 's2-r0', 's3-r0']
d3: ['s0-r1', 's1-r1', 's2-r0', 's3-r0']
We can eliminate some of the readings, and hence some of the threads,
by adding background information.
>>> import nltk.data
>>> bg = nltk.data.load('grammars/book_grammars/background.fol')
>>> dt.add_background(bg)
>>> dt.background()
all x.(boxerdog(x) -> dog(x))
all x.(boxer(x) -> person(x))
all x.-(dog(x) & person(x))
all x.(married(x) <-> exists y.marry(x,y))
all x.(bark(x) -> dog(x))
all x y.(marry(x,y) -> (person(x) & person(y)))
-(Vincent = Mia)
-(Vincent = Fido)
-(Mia = Fido)
The background information allows us to reject three of the threads as
inconsistent. To see what remains, use the ``filter=True`` parameter
on ``readings()``.
>>> dt.readings(filter=True) # doctest: +NORMALIZE_WHITESPACE
d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
The ``models()`` method gives us more information about the surviving thread.
>>> dt.models()
--------------------------------------------------------------------------------
Model for Discourse Thread d0
--------------------------------------------------------------------------------
No model found!
<BLANKLINE>
--------------------------------------------------------------------------------
Model for Discourse Thread d1
--------------------------------------------------------------------------------
% number = 1
% seconds = 0
<BLANKLINE>
% Interpretation of size 3
<BLANKLINE>
Fido = 0.
<BLANKLINE>
Mia = 1.
<BLANKLINE>
Vincent = 2.
<BLANKLINE>
f1(0) = 0.
f1(1) = 0.
f1(2) = 2.
<BLANKLINE>
bark(0).
- bark(1).
- bark(2).
<BLANKLINE>
- boxer(0).
- boxer(1).
boxer(2).
<BLANKLINE>
boxerdog(0).
- boxerdog(1).
- boxerdog(2).
<BLANKLINE>
dog(0).
- dog(1).
- dog(2).
<BLANKLINE>
- married(0).
- married(1).
married(2).
<BLANKLINE>
- person(0).
- person(1).
person(2).
<BLANKLINE>
- marry(0,0).
- marry(0,1).
- marry(0,2).
- marry(1,0).
- marry(1,1).
- marry(1,2).
- marry(2,0).
- marry(2,1).
marry(2,2).
<BLANKLINE>
--------------------------------------------------------------------------------
Model for Discourse Thread d2
--------------------------------------------------------------------------------
No model found!
<BLANKLINE>
--------------------------------------------------------------------------------
Model for Discourse Thread d3
--------------------------------------------------------------------------------
No model found!
<BLANKLINE>
Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0', 's3-r0']:
s0-r0: boxer(Vincent)
s1-r0: boxer(Fido)
s2-r0: married(Vincent)
s3-r0: bark(Fido)
<BLANKLINE>
Consistent discourse: d1 ['s0-r0', 's1-r1', 's2-r0', 's3-r0']:
s0-r0: boxer(Vincent)
s1-r1: boxerdog(Fido)
s2-r0: married(Vincent)
s3-r0: bark(Fido)
<BLANKLINE>
Inconsistent discourse: d2 ['s0-r1', 's1-r0', 's2-r0', 's3-r0']:
s0-r1: boxerdog(Vincent)
s1-r0: boxer(Fido)
s2-r0: married(Vincent)
s3-r0: bark(Fido)
<BLANKLINE>
Inconsistent discourse: d3 ['s0-r1', 's1-r1', 's2-r0', 's3-r0']:
s0-r1: boxerdog(Vincent)
s1-r1: boxerdog(Fido)
s2-r0: married(Vincent)
s3-r0: bark(Fido)
<BLANKLINE>
.. This will not be visible in the html output: create a tempdir to
play in.
>>> import tempfile, os
>>> tempdir = tempfile.mkdtemp()
>>> old_dir = os.path.abspath('.')
>>> os.chdir(tempdir)
In order to play around with your own version of background knowledge,
you might want to start off with a local copy of ``background.fol``:
>>> nltk.data.retrieve('grammars/book_grammars/background.fol')
Retrieving 'nltk:grammars/book_grammars/background.fol', saving to 'background.fol'
After you have modified the file, the ``load_fol()`` function will parse
the strings in the file into expressions of ``nltk.sem.logic``.
>>> from nltk.inference.discourse import load_fol
>>> mybg = load_fol(open('background.fol').read())
The result can be loaded as an argument of ``add_background()`` in the
manner shown earlier.
.. This will not be visible in the html output: clean up the tempdir.
>>> os.chdir(old_dir)
>>> for f in os.listdir(tempdir):
... os.remove(os.path.join(tempdir, f))
>>> os.rmdir(tempdir)
>>> nltk.data.clear_cache()
Regression Testing from book
============================
>>> logic._counter._value = 0
>>> from nltk.tag import RegexpTagger
>>> tagger = RegexpTagger(
... [('^(chases|runs)$', 'VB'),
... ('^(a)$', 'ex_quant'),
... ('^(every)$', 'univ_quant'),
... ('^(dog|boy)$', 'NN'),
... ('^(He)$', 'PRP')
... ])
>>> rc = DrtGlueReadingCommand(depparser=MaltParser(tagger=tagger))
>>> dt = DiscourseTester(map(str.split, ['Every dog chases a boy', 'He runs']), rc)
>>> dt.readings()
<BLANKLINE>
s0 readings:
<BLANKLINE>
s0-r0: ([z2],[boy(z2), (([z5],[dog(z5)]) -> ([],[chases(z5,z2)]))])
s0-r1: ([],[(([z1],[dog(z1)]) -> ([z2],[boy(z2), chases(z1,z2)]))])
<BLANKLINE>
s1 readings:
<BLANKLINE>
s1-r0: ([z1],[PRO(z1), runs(z1)])
>>> dt.readings(show_thread_readings=True)
d0: ['s0-r0', 's1-r0'] : ([z1,z2],[boy(z1), (([z3],[dog(z3)]) -> ([],[chases(z3,z1)])), (z2 = z1), runs(z2)])
d1: ['s0-r1', 's1-r0'] : INVALID: AnaphoraResolutionException
>>> dt.readings(filter=True, show_thread_readings=True)
d0: ['s0-r0', 's1-r0'] : ([z1,z3],[boy(z1), (([z2],[dog(z2)]) -> ([],[chases(z2,z1)])), (z3 = z1), runs(z3)])
>>> logic._counter._value = 0
>>> from nltk.parse import FeatureEarleyChartParser
>>> from nltk.sem.drt import DrtParser
>>> grammar = nltk.data.load('grammars/book_grammars/drt.fcfg', logic_parser=DrtParser())
>>> parser = FeatureEarleyChartParser(grammar, trace=0)
>>> trees = parser.parse('Angus owns a dog'.split())
>>> print(list(trees)[0].label()['SEM'].simplify().normalize())
([z1,z2],[Angus(z1), dog(z2), own(z1,z2)])