408 lines
11 KiB
Python
408 lines
11 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
Unit tests for nltk.tokenize.
|
||
See also nltk/test/tokenize.doctest
|
||
"""
|
||
|
||
from __future__ import unicode_literals
|
||
|
||
import unittest
|
||
|
||
from nose import SkipTest
|
||
from nose.tools import assert_equal
|
||
|
||
from nltk.tokenize import (
|
||
punkt,
|
||
word_tokenize,
|
||
TweetTokenizer,
|
||
StanfordSegmenter,
|
||
TreebankWordTokenizer,
|
||
SyllableTokenizer,
|
||
)
|
||
|
||
|
||
class TestTokenize(unittest.TestCase):
|
||
def test_tweet_tokenizer(self):
|
||
"""
|
||
Test TweetTokenizer using words with special and accented characters.
|
||
"""
|
||
|
||
tokenizer = TweetTokenizer(strip_handles=True, reduce_len=True)
|
||
s9 = "@myke: Let's test these words: resumé España München français"
|
||
tokens = tokenizer.tokenize(s9)
|
||
expected = [
|
||
':',
|
||
"Let's",
|
||
'test',
|
||
'these',
|
||
'words',
|
||
':',
|
||
'resumé',
|
||
'España',
|
||
'München',
|
||
'français',
|
||
]
|
||
self.assertEqual(tokens, expected)
|
||
|
||
def test_sonority_sequencing_syllable_tokenizer(self):
|
||
"""
|
||
Test SyllableTokenizer tokenizer.
|
||
"""
|
||
tokenizer = SyllableTokenizer()
|
||
tokens = tokenizer.tokenize('justification')
|
||
self.assertEqual(tokens, ['jus', 'ti', 'fi', 'ca', 'tion'])
|
||
|
||
def test_stanford_segmenter_arabic(self):
|
||
"""
|
||
Test the Stanford Word Segmenter for Arabic (default config)
|
||
"""
|
||
try:
|
||
seg = StanfordSegmenter()
|
||
seg.default_config('ar')
|
||
sent = u'يبحث علم الحاسوب استخدام الحوسبة بجميع اشكالها لحل المشكلات'
|
||
segmented_sent = seg.segment(sent.split())
|
||
assert segmented_sent.split() == [
|
||
'يبحث',
|
||
'علم',
|
||
'الحاسوب',
|
||
'استخدام',
|
||
'الحوسبة',
|
||
'ب',
|
||
'جميع',
|
||
'اشكال',
|
||
'ها',
|
||
'ل',
|
||
'حل',
|
||
'المشكلات',
|
||
]
|
||
except LookupError as e:
|
||
raise SkipTest(str(e))
|
||
|
||
def test_stanford_segmenter_chinese(self):
|
||
"""
|
||
Test the Stanford Word Segmenter for Chinese (default config)
|
||
"""
|
||
try:
|
||
seg = StanfordSegmenter()
|
||
seg.default_config('zh')
|
||
sent = u"这是斯坦福中文分词器测试"
|
||
segmented_sent = seg.segment(sent.split())
|
||
assert segmented_sent.split() == ['这', '是', '斯坦福', '中文', '分词器', '测试']
|
||
except LookupError as e:
|
||
raise SkipTest(str(e))
|
||
|
||
def test_phone_tokenizer(self):
|
||
"""
|
||
Test a string that resembles a phone number but contains a newline
|
||
"""
|
||
|
||
# Should be recognized as a phone number, albeit one with multiple spaces
|
||
tokenizer = TweetTokenizer()
|
||
test1 = "(393) 928 -3010"
|
||
expected = ['(393) 928 -3010']
|
||
result = tokenizer.tokenize(test1)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Due to newline, first three elements aren't part of a phone number;
|
||
# fourth is
|
||
test2 = "(393)\n928 -3010"
|
||
expected = ['(', '393', ')', "928 -3010"]
|
||
result = tokenizer.tokenize(test2)
|
||
self.assertEqual(result, expected)
|
||
|
||
def test_remove_handle(self):
|
||
"""
|
||
Test remove_handle() from casual.py with specially crafted edge cases
|
||
"""
|
||
|
||
tokenizer = TweetTokenizer(strip_handles=True)
|
||
|
||
# Simple example. Handles with just numbers should be allowed
|
||
test1 = "@twitter hello @twi_tter_. hi @12345 @123news"
|
||
expected = ['hello', '.', 'hi']
|
||
result = tokenizer.tokenize(test1)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Handles are allowed to follow any of the following characters
|
||
test2 = "@n`@n~@n(@n)@n-@n=@n+@n\\@n|@n[@n]@n{@n}@n;@n:@n'@n\"@n/@n?@n.@n,@n<@n>@n @n\n@n ñ@n.ü@n.ç@n."
|
||
expected = [
|
||
'`',
|
||
'~',
|
||
'(',
|
||
')',
|
||
'-',
|
||
'=',
|
||
'+',
|
||
'\\',
|
||
'|',
|
||
'[',
|
||
']',
|
||
'{',
|
||
'}',
|
||
';',
|
||
':',
|
||
"'",
|
||
'"',
|
||
'/',
|
||
'?',
|
||
'.',
|
||
',',
|
||
'<',
|
||
'>',
|
||
'ñ',
|
||
'.',
|
||
'ü',
|
||
'.',
|
||
'ç',
|
||
'.',
|
||
]
|
||
result = tokenizer.tokenize(test2)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Handles are NOT allowed to follow any of the following characters
|
||
test3 = "a@n j@n z@n A@n L@n Z@n 1@n 4@n 7@n 9@n 0@n _@n !@n @@n #@n $@n %@n &@n *@n"
|
||
expected = [
|
||
'a',
|
||
'@n',
|
||
'j',
|
||
'@n',
|
||
'z',
|
||
'@n',
|
||
'A',
|
||
'@n',
|
||
'L',
|
||
'@n',
|
||
'Z',
|
||
'@n',
|
||
'1',
|
||
'@n',
|
||
'4',
|
||
'@n',
|
||
'7',
|
||
'@n',
|
||
'9',
|
||
'@n',
|
||
'0',
|
||
'@n',
|
||
'_',
|
||
'@n',
|
||
'!',
|
||
'@n',
|
||
'@',
|
||
'@n',
|
||
'#',
|
||
'@n',
|
||
'$',
|
||
'@n',
|
||
'%',
|
||
'@n',
|
||
'&',
|
||
'@n',
|
||
'*',
|
||
'@n',
|
||
]
|
||
result = tokenizer.tokenize(test3)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Handles are allowed to precede the following characters
|
||
test4 = "@n!a @n#a @n$a @n%a @n&a @n*a"
|
||
expected = ['!', 'a', '#', 'a', '$', 'a', '%', 'a', '&', 'a', '*', 'a']
|
||
result = tokenizer.tokenize(test4)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Tests interactions with special symbols and multiple @
|
||
test5 = "@n!@n @n#@n @n$@n @n%@n @n&@n @n*@n @n@n @@n @n@@n @n_@n @n7@n @nj@n"
|
||
expected = [
|
||
'!',
|
||
'@n',
|
||
'#',
|
||
'@n',
|
||
'$',
|
||
'@n',
|
||
'%',
|
||
'@n',
|
||
'&',
|
||
'@n',
|
||
'*',
|
||
'@n',
|
||
'@n',
|
||
'@n',
|
||
'@',
|
||
'@n',
|
||
'@n',
|
||
'@',
|
||
'@n',
|
||
'@n_',
|
||
'@n',
|
||
'@n7',
|
||
'@n',
|
||
'@nj',
|
||
'@n',
|
||
]
|
||
result = tokenizer.tokenize(test5)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Tests that handles can have a max length of 20
|
||
test6 = "@abcdefghijklmnopqrstuvwxyz @abcdefghijklmnopqrst1234 @abcdefghijklmnopqrst_ @abcdefghijklmnopqrstendofhandle"
|
||
expected = ['uvwxyz', '1234', '_', 'endofhandle']
|
||
result = tokenizer.tokenize(test6)
|
||
self.assertEqual(result, expected)
|
||
|
||
# Edge case where an @ comes directly after a long handle
|
||
test7 = "@abcdefghijklmnopqrstu@abcde @abcdefghijklmnopqrst@abcde @abcdefghijklmnopqrst_@abcde @abcdefghijklmnopqrst5@abcde"
|
||
expected = [
|
||
'u',
|
||
'@abcde',
|
||
'@abcdefghijklmnopqrst',
|
||
'@abcde',
|
||
'_',
|
||
'@abcde',
|
||
'5',
|
||
'@abcde',
|
||
]
|
||
result = tokenizer.tokenize(test7)
|
||
self.assertEqual(result, expected)
|
||
|
||
def test_treebank_span_tokenizer(self):
|
||
"""
|
||
Test TreebankWordTokenizer.span_tokenize function
|
||
"""
|
||
|
||
tokenizer = TreebankWordTokenizer()
|
||
|
||
# Test case in the docstring
|
||
test1 = "Good muffins cost $3.88\nin New (York). Please (buy) me\ntwo of them.\n(Thanks)."
|
||
expected = [
|
||
(0, 4),
|
||
(5, 12),
|
||
(13, 17),
|
||
(18, 19),
|
||
(19, 23),
|
||
(24, 26),
|
||
(27, 30),
|
||
(31, 32),
|
||
(32, 36),
|
||
(36, 37),
|
||
(37, 38),
|
||
(40, 46),
|
||
(47, 48),
|
||
(48, 51),
|
||
(51, 52),
|
||
(53, 55),
|
||
(56, 59),
|
||
(60, 62),
|
||
(63, 68),
|
||
(69, 70),
|
||
(70, 76),
|
||
(76, 77),
|
||
(77, 78),
|
||
]
|
||
result = list(tokenizer.span_tokenize(test1))
|
||
self.assertEqual(result, expected)
|
||
|
||
# Test case with double quotation
|
||
test2 = "The DUP is similar to the \"religious right\" in the United States and takes a hardline stance on social issues"
|
||
expected = [
|
||
(0, 3),
|
||
(4, 7),
|
||
(8, 10),
|
||
(11, 18),
|
||
(19, 21),
|
||
(22, 25),
|
||
(26, 27),
|
||
(27, 36),
|
||
(37, 42),
|
||
(42, 43),
|
||
(44, 46),
|
||
(47, 50),
|
||
(51, 57),
|
||
(58, 64),
|
||
(65, 68),
|
||
(69, 74),
|
||
(75, 76),
|
||
(77, 85),
|
||
(86, 92),
|
||
(93, 95),
|
||
(96, 102),
|
||
(103, 109),
|
||
]
|
||
result = list(tokenizer.span_tokenize(test2))
|
||
self.assertEqual(result, expected)
|
||
|
||
# Test case with double qoutation as well as converted quotations
|
||
test3 = "The DUP is similar to the \"religious right\" in the United States and takes a ``hardline'' stance on social issues"
|
||
expected = [
|
||
(0, 3),
|
||
(4, 7),
|
||
(8, 10),
|
||
(11, 18),
|
||
(19, 21),
|
||
(22, 25),
|
||
(26, 27),
|
||
(27, 36),
|
||
(37, 42),
|
||
(42, 43),
|
||
(44, 46),
|
||
(47, 50),
|
||
(51, 57),
|
||
(58, 64),
|
||
(65, 68),
|
||
(69, 74),
|
||
(75, 76),
|
||
(77, 79),
|
||
(79, 87),
|
||
(87, 89),
|
||
(90, 96),
|
||
(97, 99),
|
||
(100, 106),
|
||
(107, 113),
|
||
]
|
||
result = list(tokenizer.span_tokenize(test3))
|
||
self.assertEqual(result, expected)
|
||
|
||
def test_word_tokenize(self):
|
||
"""
|
||
Test word_tokenize function
|
||
"""
|
||
|
||
sentence = "The 'v', I've been fooled but I'll seek revenge."
|
||
expected = ['The', "'", 'v', "'", ',', 'I', "'ve", 'been', 'fooled',
|
||
'but', 'I', "'ll", 'seek', 'revenge', '.']
|
||
self.assertEqual(word_tokenize(sentence), expected)
|
||
|
||
sentence = "'v' 're'"
|
||
expected = ["'", 'v', "'", "'re", "'"]
|
||
self.assertEqual(word_tokenize(sentence), expected)
|
||
|
||
def test_punkt_pair_iter(self):
|
||
|
||
test_cases = [
|
||
('12', [('1', '2'), ('2', None)]),
|
||
('123', [('1', '2'), ('2', '3'), ('3', None)]),
|
||
('1234', [('1', '2'), ('2', '3'), ('3', '4'), ('4', None)]),
|
||
]
|
||
|
||
for (test_input, expected_output) in test_cases:
|
||
actual_output = [x for x in punkt._pair_iter(test_input)]
|
||
|
||
assert_equal(actual_output, expected_output)
|
||
|
||
def test_punkt_pair_iter_handles_stop_iteration_exception(self):
|
||
# test input to trigger StopIteration from next()
|
||
it = iter([])
|
||
# call method under test and produce a generator
|
||
gen = punkt._pair_iter(it)
|
||
# unpack generator, ensure that no error is raised
|
||
list(gen)
|
||
|
||
def test_punkt_tokenize_words_handles_stop_iteration_exception(self):
|
||
obj = punkt.PunktBaseClass()
|
||
|
||
class TestPunktTokenizeWordsMock:
|
||
def word_tokenize(self, s):
|
||
return iter([])
|
||
|
||
obj._lang_vars = TestPunktTokenizeWordsMock()
|
||
# unpack generator, ensure that no error is raised
|
||
list(obj._tokenize_words('test'))
|