PCQRSCANER/venv/Lib/site-packages/nltk/parse/util.py
2019-12-22 21:51:47 +01:00

237 lines
8.3 KiB
Python

# Natural Language Toolkit: Parser Utility Functions
#
# Author: Ewan Klein <ewan@inf.ed.ac.uk>
#
# Copyright (C) 2001-2019 NLTK Project
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT
"""
Utility functions for parsers.
"""
from __future__ import print_function
from nltk.grammar import CFG, FeatureGrammar, PCFG
from nltk.data import load
from nltk.parse.chart import Chart, ChartParser
from nltk.parse.pchart import InsideChartParser
from nltk.parse.featurechart import FeatureChart, FeatureChartParser
def load_parser(
grammar_url, trace=0, parser=None, chart_class=None, beam_size=0, **load_args
):
"""
Load a grammar from a file, and build a parser based on that grammar.
The parser depends on the grammar format, and might also depend
on properties of the grammar itself.
The following grammar formats are currently supported:
- ``'cfg'`` (CFGs: ``CFG``)
- ``'pcfg'`` (probabilistic CFGs: ``PCFG``)
- ``'fcfg'`` (feature-based CFGs: ``FeatureGrammar``)
:type grammar_url: str
:param grammar_url: A URL specifying where the grammar is located.
The default protocol is ``"nltk:"``, which searches for the file
in the the NLTK data package.
:type trace: int
:param trace: The level of tracing that should be used when
parsing a text. ``0`` will generate no tracing output;
and higher numbers will produce more verbose tracing output.
:param parser: The class used for parsing; should be ``ChartParser``
or a subclass.
If None, the class depends on the grammar format.
:param chart_class: The class used for storing the chart;
should be ``Chart`` or a subclass.
Only used for CFGs and feature CFGs.
If None, the chart class depends on the grammar format.
:type beam_size: int
:param beam_size: The maximum length for the parser's edge queue.
Only used for probabilistic CFGs.
:param load_args: Keyword parameters used when loading the grammar.
See ``data.load`` for more information.
"""
grammar = load(grammar_url, **load_args)
if not isinstance(grammar, CFG):
raise ValueError("The grammar must be a CFG, " "or a subclass thereof.")
if isinstance(grammar, PCFG):
if parser is None:
parser = InsideChartParser
return parser(grammar, trace=trace, beam_size=beam_size)
elif isinstance(grammar, FeatureGrammar):
if parser is None:
parser = FeatureChartParser
if chart_class is None:
chart_class = FeatureChart
return parser(grammar, trace=trace, chart_class=chart_class)
else: # Plain CFG.
if parser is None:
parser = ChartParser
if chart_class is None:
chart_class = Chart
return parser(grammar, trace=trace, chart_class=chart_class)
def taggedsent_to_conll(sentence):
"""
A module to convert a single POS tagged sentence into CONLL format.
>>> from nltk import word_tokenize, pos_tag
>>> text = "This is a foobar sentence."
>>> for line in taggedsent_to_conll(pos_tag(word_tokenize(text))):
... print(line, end="")
1 This _ DT DT _ 0 a _ _
2 is _ VBZ VBZ _ 0 a _ _
3 a _ DT DT _ 0 a _ _
4 foobar _ JJ JJ _ 0 a _ _
5 sentence _ NN NN _ 0 a _ _
6 . _ . . _ 0 a _ _
:param sentence: A single input sentence to parse
:type sentence: list(tuple(str, str))
:rtype: iter(str)
:return: a generator yielding a single sentence in CONLL format.
"""
for (i, (word, tag)) in enumerate(sentence, start=1):
input_str = [str(i), word, '_', tag, tag, '_', '0', 'a', '_', '_']
input_str = "\t".join(input_str) + "\n"
yield input_str
def taggedsents_to_conll(sentences):
"""
A module to convert the a POS tagged document stream
(i.e. list of list of tuples, a list of sentences) and yield lines
in CONLL format. This module yields one line per word and two newlines
for end of sentence.
>>> from nltk import word_tokenize, sent_tokenize, pos_tag
>>> text = "This is a foobar sentence. Is that right?"
>>> sentences = [pos_tag(word_tokenize(sent)) for sent in sent_tokenize(text)]
>>> for line in taggedsents_to_conll(sentences):
... if line:
... print(line, end="")
1 This _ DT DT _ 0 a _ _
2 is _ VBZ VBZ _ 0 a _ _
3 a _ DT DT _ 0 a _ _
4 foobar _ JJ JJ _ 0 a _ _
5 sentence _ NN NN _ 0 a _ _
6 . _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
1 Is _ VBZ VBZ _ 0 a _ _
2 that _ IN IN _ 0 a _ _
3 right _ NN NN _ 0 a _ _
4 ? _ . . _ 0 a _ _
<BLANKLINE>
<BLANKLINE>
:param sentences: Input sentences to parse
:type sentence: list(list(tuple(str, str)))
:rtype: iter(str)
:return: a generator yielding sentences in CONLL format.
"""
for sentence in sentences:
for input_str in taggedsent_to_conll(sentence):
yield input_str
yield '\n\n'
######################################################################
# { Test Suites
######################################################################
class TestGrammar(object):
"""
Unit tests for CFG.
"""
def __init__(self, grammar, suite, accept=None, reject=None):
self.test_grammar = grammar
self.cp = load_parser(grammar, trace=0)
self.suite = suite
self._accept = accept
self._reject = reject
def run(self, show_trees=False):
"""
Sentences in the test suite are divided into two classes:
- grammatical (``accept``) and
- ungrammatical (``reject``).
If a sentence should parse accordng to the grammar, the value of
``trees`` will be a non-empty list. If a sentence should be rejected
according to the grammar, then the value of ``trees`` will be None.
"""
for test in self.suite:
print(test['doc'] + ":", end=' ')
for key in ['accept', 'reject']:
for sent in test[key]:
tokens = sent.split()
trees = list(self.cp.parse(tokens))
if show_trees and trees:
print()
print(sent)
for tree in trees:
print(tree)
if key == 'accept':
if trees == []:
raise ValueError("Sentence '%s' failed to parse'" % sent)
else:
accepted = True
else:
if trees:
raise ValueError("Sentence '%s' received a parse'" % sent)
else:
rejected = True
if accepted and rejected:
print("All tests passed!")
def extract_test_sentences(string, comment_chars="#%;", encoding=None):
"""
Parses a string with one test sentence per line.
Lines can optionally begin with:
- a bool, saying if the sentence is grammatical or not, or
- an int, giving the number of parse trees is should have,
The result information is followed by a colon, and then the sentence.
Empty lines and lines beginning with a comment char are ignored.
:return: a list of tuple of sentences and expected results,
where a sentence is a list of str,
and a result is None, or bool, or int
:param comment_chars: ``str`` of possible comment characters.
:param encoding: the encoding of the string, if it is binary
"""
if encoding is not None:
string = string.decode(encoding)
sentences = []
for sentence in string.split('\n'):
if sentence == '' or sentence[0] in comment_chars:
continue
split_info = sentence.split(':', 1)
result = None
if len(split_info) == 2:
if split_info[0] in ['True', 'true', 'False', 'false']:
result = split_info[0] in ['True', 'true']
sentence = split_info[1]
else:
result = int(split_info[0])
sentence = split_info[1]
tokens = sentence.split()
if tokens == []:
continue
sentences += [(tokens, result)]
return sentences
# nose thinks it is a test
extract_test_sentences.__test__ = False