5.3 KiB
5.3 KiB
import pandas as pd
import csv
import regex as re
import nltk
from collections import Counter, defaultdict
import string
import unicodedata
def clean_text(text):
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\\\n", "").replace("\\\\n", " "))
def train_model(data, model):
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row["final"]))
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
if w1 and w2:
model[w2][w1] += 1
for w1 in model:
total_count = float(sum(model[w1].values()))
for w2 in model[w1]:
model[w2][w1] /= total_count
def predict(word, model):
predictions = dict(model[word])
most_common = dict(Counter(predictions).most_common(5))
total_prob = 0.0
str_prediction = ""
for word, prob in most_common.items():
total_prob += prob
str_prediction += f"{word}:{prob} "
if not total_prob:
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
if 1 - total_prob >= 0.01:
str_prediction += f":{1-total_prob}"
else:
str_prediction += f":0.01"
return str_prediction
def predict_data(read_path, save_path, model):
data = pd.read_csv(
read_path, sep="\t", error_bad_lines=False, header=None, quoting=csv.QUOTE_NONE
)
with open(save_path, "w") as file:
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row[7]))
if len(words) < 3:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else:
prediction = predict(words[-1], model)
file.write(prediction + "\n")
with open("in-header.tsv") as f:
in_cols = f.read().strip().split("\t")
with open("out-header.tsv") as f:
out_cols = f.read().strip().split("\t")
in_cols
['FileId', 'Year', 'LeftContext', 'RightContext']
out_cols
['Word']
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
on_bad_lines='skip',
header=None,
# names=in_cols,
quoting=csv.QUOTE_NONE,
)
train_labels = pd.read_csv(
"train/expected.tsv",
sep="\t",
on_bad_lines='skip',
header=None,
# names=out_cols,
quoting=csv.QUOTE_NONE,
)
train_data = data[[7, 6]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data["final"] = train_data[7] + train_data[0] + train_data[6]
train_data
model = defaultdict(lambda: defaultdict(lambda: 0))
train_model(train_data, model)
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)