8.8 KiB
8.8 KiB
import pandas as pd
from utils import *
data = get_csv("train/in.tsv.xz")
train_labels = get_csv("train/expected.tsv")
train_data = data[[6,7]]
train_data = pd.concat([train_data, train_labels], axis=1)
train_data[607] = train_data[6] + train_data[0] + train_data[7]
train_data[607] = train_data[607].apply(clean_text)
train_data[607]
0 came fiom the last place to thisnplace and thi... 1 mb boot political obeednattempt to imagine a p... 2 thera were in only aeventyninenuberlbers lo ... 3 a gixnl man y niterertiiiv diiclosurs regard ... 4 tin ub tv thf bbabbt qabjenmr schiffs tutemen... ... 432017 sam clendenin bad a fancy for uinscience of me... 432018 witahtt halting the party ware dilven to the s... 432019 it was the last thing that either ofnthem expe... 432020 settlement with the departmentnit is also show... 432021 flour quotationslow extras at r ® ncity mi... Name: 607, Length: 432022, dtype: object
with open("tmp", "w+") as f:
for t in train_data[607]:
f.write(t + "\n")
KENLM_BUILD_PATH = "../kenlm/build/"
!$KENLM_BUILD_PATH/bin/lmplz -o 4 < tmp > model.arpa
=== 1/5 Counting and sorting n-grams === Reading /home/me/challenging-america-word-gap-prediction-kenlm/tmp ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 ************************/home/me/kenlm/lm/builder/corpus_count.cc:179 in void lm::builder::{anonymous}::ComplainDisallowed(StringPiece, lm::WarningAction&) threw FormatLoadException. Special word <s> is not allowed in the corpus. I plan to support models containing <unk> in the future. Pass --skip_symbols to convert these symbols to whitespace. /bin/bash: linia 1: 5055 Przerwane (zrzut pamięci) ../kenlm/build//bin/lmplz -o 4 < tmp > model.arpa
!rm tmp
import kenlm
model = kenlm.Model("./model.arpa")
Loading the LM will be faster if you build a binary file. Reading /home/me/challenging-america-word-gap-prediction-kenlm/model.arpa ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 ****************************************************************************************************
!pip install english_words
Defaulting to user installation because normal site-packages is not writeable Collecting english_words Downloading english-words-1.1.0.tar.gz (1.1 MB) |████████████████████████████████| 1.1 MB 985 kB/s [?25hBuilding wheels for collected packages: english-words Building wheel for english-words (setup.py) ... [?25ldone [?25h Created wheel for english-words: filename=english_words-1.1.0-py3-none-any.whl size=1106680 sha256=818b2393457321fc616c24465b2c7ce020853e36d9d8e1b03142a5e18076713d Stored in directory: /home/me/.cache/pip/wheels/2c/48/9a/f697d8d989ca4e4c1060f9da73caea372d7e1b78402abff8bb Successfully built english-words Installing collected packages: english-words Successfully installed english-words-1.1.0
from english_words import english_words_alpha_set
from math import log10
def predict(before, after):
result = ''
prob = 0.0
best = []
for word in english_words_alpha_set:
text = ' '.join([before, word, after])
text_score = model.score(text, bos=False, eos=False)
if len(best) < 12:
best.append((word, text_score))
else:
is_better = False
worst_score = None
for score in best:
if not worst_score:
worst_score = score
else:
if worst_score[1] > score[1]:
worst_score = score
if worst_score[1] < text_score:
best.remove(worst_score)
best.append((word, text_score))
probs = sorted(best, key=lambda tup: tup[1], reverse=True)
pred_str = ''
for word, prob in probs:
pred_str += f'{word}:{prob} '
pred_str += f':{log10(0.99)}'
return pred_str
from nltk import trigrams, word_tokenize
def make_prediction(path, result_path):
pdata = get_csv(path)
with open(result_path, 'w', encoding='utf-8') as file_out:
for _, row in pdata.iterrows():
before, after = word_tokenize(clean_text(str(row[6]))), word_tokenize(clean_text(str(row[7])))
if len(before) < 2 or len(after) < 2:
pred = prediction
else:
pred = predict(before[-1], after[0])
file_out.write(pred + '\n')
make_prediction("dev-0/in.tsv.xz", "dev-0/out.tsv")
make_prediction("test-A/in.tsv.xz", "test-A/out.tsv")