14 KiB
14 KiB
import pandas as pd
import csv
import regex as re
import nltk
from collections import Counter, defaultdict
import string
import unicodedata
def clean_text(text):
return re.sub(r"\p{P}", "", str(text).lower().replace("-\\\\n", "").replace("\\\\n", " "))
def train_model(data, model):
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row[760]))
for w1, w2 in nltk.bigrams(words, pad_left=True, pad_right=True):
if w1 and w2:
model[w2][w1] += 1
for w2 in model:
total_count = float(sum(model[w2].values()))
for w1 in model[w2]:
model[w2][w1] /= total_count
def predict(word, model):
predictions = dict(model[word])
most_common = dict(Counter(predictions).most_common(5))
total_prob = 0.0
str_prediction = ""
for word, prob in most_common.items():
total_prob += prob
str_prediction += f"{word}:{prob} "
if not total_prob:
return "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
if 1 - total_prob >= 0.01:
str_prediction += f":{1-total_prob}"
else:
str_prediction += f":0.01"
return str_prediction
def predict_data(read_path, save_path, model):
data = pd.read_csv(
read_path,
sep="\t",
error_bad_lines=False,
header=None,
quoting=csv.QUOTE_NONE,
encoding="utf-8"
)
with open(save_path, "w", encoding="utf-8") as f:
for _, row in data.iterrows():
words = nltk.word_tokenize(clean_text(row[7]))
if len(words) < 3:
prediction = "the:0.2 be:0.2 to:0.2 of:0.1 and:0.1 a:0.1 :0.1"
else:
prediction = predict(words[-1], model)
f.write(prediction + "\n")
with open("in-header.tsv") as f:
in_cols = f.read().strip().split("\t")
with open("out-header.tsv") as f:
out_cols = f.read().strip().split("\t")
in_cols
['FileId', 'Year', 'LeftContext', 'RightContext']
out_cols
['Word']
data = pd.read_csv(
"train/in.tsv.xz",
sep="\t",
on_bad_lines='skip',
header=None,
# names=in_cols,
quoting=csv.QUOTE_NONE,
encoding="utf-8"
)
train_words = pd.read_csv(
"train/expected.tsv",
sep="\t",
on_bad_lines='skip',
header=None,
# names=out_cols,
quoting=csv.QUOTE_NONE,
encoding="utf-8"
)
train_data = data[[7, 6]]
train_data = pd.concat([train_data, train_words], axis=1)
train_data[760] = train_data[7] + train_data[0] + train_data[6]
train_data
7 | 6 | 0 | 760 | |
---|---|---|---|---|
0 | said\nit's all squash. The best I could get\ni... | came fiom the last place to this\nplace, and t... | lie | said\nit's all squash. The best I could get\ni... |
1 | \ninto a proper perspective with those\nminor ... | MB. BOOT'S POLITICAL OBEED\nAttempt to imagine... | himself | \ninto a proper perspective with those\nminor ... |
2 | all notU\nashore and afloat arc subjects for I... | "Thera were in 1771 only aeventy-nine\n*ub*erl... | of | all notU\nashore and afloat arc subjects for I... |
3 | ceucju l< d no; <o waste it nud so\nsunk it in... | A gixnl man y nitereRtiiiv dii-clos-\nur«s reg... | ably | ceucju l< d no; <o waste it nud so\nsunk it in... |
4 | ascertained w? OCt the COOltS of ibis\nletale ... | Tin: 188UB TV THF BBABBT QABJE\nMr. Schiffs *t... | j | ascertained w? OCt the COOltS of ibis\nletale ... |
... | ... | ... | ... | ... |
432017 | \nSam was arrested.\nThe case excited a great ... | Sam Clendenin bad a fancy for Ui«\nscience of ... | and | \nSam was arrested.\nThe case excited a great ... |
432018 | through the alnp the »Uitors laapeeeed tia.»\n... | Wita.htt halting the party ware dilven to the ... | paasliic | through the alnp the »Uitors laapeeeed tia.»\n... |
432019 | Agua Negra across the line.\nIt was a grim pla... | It was the last thing that either of\nthem exp... | for | Agua Negra across the line.\nIt was a grim pla... |
432020 | \na note of Wood, Dialogue fc Co., for\nc27,im... | settlement with the department.\nIt is also sh... | for | \na note of Wood, Dialogue fc Co., for\nc27,im... |
432021 | 3214c;do White at 3614c: Mixed Western at\n331... | Flour quotations—low extras at 1 R0®2 50;\ncit... | at | 3214c;do White at 3614c: Mixed Western at\n331... |
432022 rows × 4 columns
model = defaultdict(lambda: defaultdict(lambda: 0))
train_model(train_data, model)
predict_data("dev-0/in.tsv.xz", "dev-0/out.tsv", model)
C:\Users\Norbert\AppData\Local\Temp\ipykernel_15436\749044266.py:46: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. data = pd.read_csv(
predict_data("test-A/in.tsv.xz", "test-A/out.tsv", model)
C:\Users\Norbert\AppData\Local\Temp\ipykernel_15436\749044266.py:46: FutureWarning: The error_bad_lines argument has been deprecated and will be removed in a future version. Use on_bad_lines in the future. data = pd.read_csv(