232 lines
43 KiB
Plaintext
232 lines
43 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"id": "a4045b0f",
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Requirement already satisfied: pandas in c:\\users\\piotr\\anaconda3\\lib\\site-packages (1.3.5)\n",
|
|
"Requirement already satisfied: python-dateutil>=2.7.3 in c:\\users\\piotr\\anaconda3\\lib\\site-packages (from pandas) (2.8.2)\n",
|
|
"Requirement already satisfied: pytz>=2017.3 in c:\\users\\piotr\\anaconda3\\lib\\site-packages (from pandas) (2021.3)\n",
|
|
"Requirement already satisfied: numpy>=1.17.3 in c:\\users\\piotr\\appdata\\roaming\\python\\python38\\site-packages (from pandas) (1.21.4)\n",
|
|
"Requirement already satisfied: six>=1.5 in c:\\users\\piotr\\anaconda3\\lib\\site-packages (from python-dateutil>=2.7.3->pandas) (1.16.0)\n",
|
|
"Note: you may need to restart the kernel to use updated packages.\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"pip install pandas"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 5,
|
|
"id": "12138336",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import json"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 6,
|
|
"id": "571c44cc",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"with open('../open-data/data/events/3749068.json') as f:\n",
|
|
" match = json.load(f)\n",
|
|
"\n",
|
|
"df = pd.json_normalize(match, sep='_').assign(match_id=\"7567\")\n",
|
|
"shots = df[df.type_name == 'Shot'].set_index('id')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 7,
|
|
"id": "e96953e8",
|
|
"metadata": {
|
|
"scrolled": true
|
|
},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAJ0CAYAAAD3ZnmmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8/fFQqAAAACXBIWXMAAAsTAAALEwEAmpwYAABvB0lEQVR4nO3dZ5hkR3m38fvZnJQRklZCEiCDACEtImOCAGMTLdlggslgbAQGgw02waZUrw0Gg8lBGAzIRIPJIicRRJBAiQwCZWmV00ZtqPdDndH2jmZmZ87M9OmeuX/X1dfOdJ8+Xd3T3Xv+p6qeilIKkiRJkqSpWdB1AyRJkiRpGBmmJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJ6ouIOCUi/qrrdvRbRJSIOKzrdsxVEfGMiPhe1+0YT0ScGBH/MsHtJ0TEh/rZpkESEedHxB/1+TGPiYiLZ3B/D4iIX8/U/iQNF8OUNEc0YeXaiFjadVv6rTmYWddc1jcBZl3P5eBx7neLA9m5EvrGO2CcyvOb60GwH0GmlPLcUsq/No83owfxXZtrz6etUsp3Syl37LodkrphmJLmgIg4FHgAUIA/3cW2C/vRpn5qDmZWlVJWAXdprt5z5LpSyoVdtk9TMxffo5KkuckwJc0NTwN+CHwAeHrvDRHxgYh4V0R8MSLWAw+OiEdGxC8i4saIuCQiXtKz/aMj4qyIuC4ivh8RR/bcdn5EvCQizomI6yPifyNiWXPbXhFxckRc2fSQnRwRB+2q4RGxOiI2RsTePdfdLSKuiojFEXFYRHy7ebyrIuJ/p/LCNPv/XERcExHnRsRzmusfDrwCeELTe3V2RLyaGkrf3lz39mbbwyPia80+fh0Rjx/1+r4jIr7QvJ4/iojbj2rGH0XEb5vX9B0REc19bx8R34yIq5vn9uGI2HPU6/3S5vVeHxH/HRH7RcSXmsf6ekTsNZXXY4zX5znN63JN8zqtbq7/TrPJ2c1r8YSIuFXzd72u2f67EbGgp60vb95X10bE+3veG7cYitfb6zXWe3SMdj4jIn7fPO/zIuLJo25/Q/O450XEI3qun/TffzKP02yzrHnP3qr5/ZURsTUidm9+/9eIeHPPc/u3iFgJfAlYHTt6TFc3u1wSEf/TPObPI+IeE/y9xnwvNu+layLi6J7nfWVEHNP8fkpE/HtEnBYRN0TEZ2Pnz9x9on7er2s+C8f03LZ38/e8tHmNPzPe84mIBRHxsoj4XfO+/viox3lqRFzQ3PbK8Z5ns+0+EfH5pr2nN6/j93puv19z/fXNv/frue2ZEfHL5jX9fUT8zQSP809RvwdvbF7Th46z3Zjfm9HTQxf1c9LbK745Ik5pblvavE8vjIjLow4BXT7RayBpCJRSvHjxMuQX4FzgecDdgS3Afj23fQC4HvhD6gmUZcBlwAOa2/cCjm5+vhtwBXBvYCE1mJ0PLG1uPx84DVgN7A38Enhuc9s+wGOBFcBuwCeAz/S04xTgr8Zp/zeB5/T8/nrgxObnjwKv7Gn7/XfxWhxK7aFb1Pz+HeCdzX3XAFcCD2luOwH40Kj779ROYCVwEfBMYFHzGl0F3Lnn9b0auFdz+4eBj/XcvwAnA3sCBzeP//DmtsOAhwFLgX2btr65577nU0PyfsCBzd/mjKYNy5rXLY3zOhwDXDzG9Tc/P+AhzXM5umnD24DvjGr7YT2//ztwIrC4uTwAiJ62/gy4TfPeOBX4t+a2ZwDfG9WOm/fNGO/RUduuBG4A7tj8fgBwl559bwGeQ33PHg9c2tOuSf/9J3qcMV7H7wCPbX7+KvA74BE9t/1Zz3MbeR1u8Tdp2rAJeGTT/n8HfjjOY+7qvfgc4BfUz+BXgDeM+rtfAhzR7OeTI8+d+t66umnDAup78mpg3+b2LwD/S/2uWAw8aILn83fU9+xB1PfUu4GPNrfdGVgHPLC57Y3AVuCPxnm+H2suK5r7XkTzPqK+x64Fntq8Fk9qft+nuf1RwO2BAB4EbGDH99zN7Qbu2Ox3dc/3x+3Hac9435u3eB2a63enfkf+TfP7m4DPNW3fDfg88O9T+a734sXL4F3smZKGXETcHzgE+Hgp5SfUg7q/HLXZZ0spp5ZStpdSNlEPPu8cEbuXUq4tpZzRbPfXwLtLKT8qpWwrpZwEbAbu07Ovt5ZSLi2lXEM9GFgDUEq5upTyyVLKhlLKjcCrqQcxk/ER6sEQERHAE5vraNp6CPVgZ1MpZdLFBiLiNtQD9H9q7nsW8F5qT95kPRo4v5Ty/lLK1lLKmdQD0b/o2ebTpZTTSilbqWFqzah9vLaUcl2pww2/xY7X7NxSytdKKZtLKVdSDy5Hv2ZvK6VcXkq5BPgu8KNSypnN3/HT1APq8axuehpuvgD377n9ycD7SilnlFI2Ay8H7ht12OhYtlADxiGllC2lDq8sPbe/vZRyUfPeeDXN33SSRr9HR9sOHBERy0spl5VSft5z2wWllPeUUrYBJzVt3K/l33+ix+n1beBBEbEIOBJ4a/P7MuCe1EA1Wd8rpXyxaf8HgaPG2W7C92Ip5T3UEys/or4Go3t+PlhK+VkpZT3wL8Djow6pfArwxaYN20spXwN+DDwyIg4AHkE9aXJt83f/9gTP5bnAK0spFzfvqROAxzWv0+OAk0sp32lu+xfq630LTbseSz1ZsKGU8gvq33bEo4DfllI+2LwWHwV+BTymeS2+UEr5Xam+TQ28DxjjobZRg92dI2JxKeX8Usrvxnlu431vjtX+BdTvsFNKKe9uvtf+GnhxKeWa5jvyNdTvOklDzDAlDb+nA18tpVzV/P4RRg31o5557fVY6lnoC6IOobtvc/0hwD+MOvi+DbUnasTanp83AKsAImJFRLy7GcJzA/Vgcs+Y3PyXT1IP4g+gnrXeTg0OAP9IPbt8WjME6lmT2N+I1cDIgcuIC6hn4ifrEODeo16TJwP792wz5muyq9ujDtn7WDNk6AbgQ8CtRt338p6fN47x++jH6nVpKWXP3gvQG0ZXU18PAEop66g9EuO9Pq+nHqx/tRk69bJRt/e+zy5g5/fNrox+j96sOfh/AvVA/bKoQyoP79lkbc+2G5ofVzHFv/8kHqfXt6k9EkcDPwW+Rg3C9wHOLaVcPd7zGcPo98eyJnyMNpn34nuovU9vawJLr9F/n8XU99shwF+MEboPoH7+rymlXDvJ53II8Ome/fySGlj2o/49bm5D83qP9zrtS+1x6m1z7887vXd7ntOBABHxiIj4YdShj9dRv+9Gf7YopZwLvIga+q5oPo/jvW/H+94cy6upvU8v7Hk+K4Cf9Lw2X26ulzTEDFPSEGvG2z+eekZ8bUSsBV4MHBURvWe3e3sPKKWcXko5Frg18Bng481NFwGvHnUAvqI567sr/0AdMnPvUsru1FAENQhNqDlQ+yr1QPYvqcPkSnPb2lLKc0opq4G/Ad4Zk68wdymwd0Ts1nPdwdThTjDqdRnnuouAb496TVaVUo6fZBsm8prm8e7avGZPYRKv1wy6lHrwC0DUeTD7sOP12Ukp5cZSyj+UUm5HLXTy96Pml9ym5+eDm/0DrKceSI48Tu/B/827n6ihpZSvlFIeRj3A/xU1NOzKlP/+U3ic71Pf739GfX/8otn3I6lBa8ynMYk2T2TC92JErALeDPw3cEL0zFVqjP77bKEOE7yI2mvVu9+VpZTXNrftHT1z+XbxfC6iDnfs3deypmf1st42RMQK6vttLFdShwD2zrvsbf9O792e53RJ1IqmnwTeQB3yvCfwRcb5bJVSPlJKGenhL8DrxtluvO/NnUTEE6m9so8rpWxprr6KevLjLj2vyx6lFs2RNMQMU9JwO4561vfO1KFja4A7UXt1xhzKFBFLIuLJEbFH8x/9DewYavMe4LkRce+oVkbEo0YdjI5nN+rBwnXNQVya4nP5SNPmx7FjiB8R8Rexo5DFtdSDnTGHBo1WSrmIetD771GLBhwJPJvaAwS1l+fQZkgOPdfdruf3k4E7RJ04v7i53DMi7jTF5zeW3ahzSK6PiAOBl87APqfio8AzI2JNcwD6GuowwvOb23d6LaIWJzmsGbJ0PfW91/u3eH5EHNT8/V9JnWcDcDZwl+ZxllF7ASat6cE7tgl7m6mv2S7fA1P9+0/lcZoesJ8Az2dHePo+tVdrvDB1ObBPROyxq7aPY1fvxbcAPy6l/BV1ntOJo+7/lIi4cxNi/h/wf83Qwg8Bj4mIP4mIhc1rdUxEHFRKuYxaaOKdUYvMLI6IkRMlYz2fE4FXR8QhABGxb0Qc29z2f8CjI+L+EbGkacOYxyFNuz5FDYUrmh7C3u+0LzavxV9GxKKIeAL1e/BkYAl16N6VwNaoBUn+eKzHiYg7RsRDmvf/Jup32C3+5rv43uzd7m7UuYfHlTp0d+T5bKd+v74pIm7dbHtgRPzJWO2SNDwMU9Jwezrw/lLKhU0PztpSylrg7cCTxxkqBHXS9vnN0LLnUocKUUr5MXUS+9upweVc6gT/yXgzsJx6BvaH1CEsU/E54A+AtaWUs3uuvyfwo4hY12zzd6WU309hv0+iTiq/lDrHKJVSvt7c9onm36sjYmT+w1uoczyujYi3NkPE/pg6t+FS6pCs11EP1qYrU4eJXU89+P3UDOxz0prX4V+oZ/Evo07Y753DcQJwUjMs6fHUv8/XqSHjB8A7Synf6tn+I9Qext9T5+79W/M4v6EeOH8d+C07DzWcjAXA31Nf/2uow+km2zM4lb//VB/n29Shcqf1/L4b48yXKqX8ihpgf9+8plMZBslE78UmsDy8p71/DxwdO1cj/CC1IMZaakGOFzb7vQg4llrd8Epq79JL2XGM8FRqL9avqEVQXjTB83kL9XP61Yi4kfpdcO9m+59Tw+dHqO+3a4GJ1qn6W2CPpr0fbB5rc7Ovq6lzyP6BOlTwH4FHl1Kual6nF1J7jq6l9nZ/bpzHWAq8lvq9tZba6/TycbYd83tzlGOpxSm+Fzsq+n2pue2fqN+pP2z28XVq76akITZS7UiSpNYi4nxqlcCv72pb9V/U8twfKqW8t+u2tBURrwP2L6WMnhMqSZ2xZ0qSJA2cqGtqHdkMOb4XdYjmp7tulyT1Gm8IkCRJUpd2ow7tW02dn/WfwGc7bZEkjeIwP0mSJElqwWF+kiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJamFR1w2YqpzzmcC+wLldt0WSNOsOa/71O1+S5rbDgCtTSnfruiFTMXRhihqkVnXdCElSX/h9L0nzw1B+3w9jmDoXIKV0TMftkCTNspzzKeB3viTNdSPf98PGOVOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFPTEBHHRUSJiMM7evxDI+JnXTy2JEnSbIiIfSLirOayNiIu6fl9yahtXxQRK3p+f8U0H/sDEfG46exjEo9xTEScPNXHHf1cNRgMU9PzJOB7zb87iYhF/W+OJEnScCulXF1KWVNKWQOcCLxp5PdSyk2jNn8R0BswphWmBtyL2Pm5zqiozAZT5AvWUkSsAu4PPBt4YnPdMRHx3Yj4HPCLiFgZEV+IiLMj4mcR8YRmu7tHxLcj4icR8ZWIOKC5/pSIeF1EnBYRv4mIBzTXH9rs94zmcr9unrUkSVL/RcRDI+LMiPhpRLwvIpZGxAuB1cC3IuJbEfFaYHnTg/Xh5n5PaY6rzoqId0fEwub6dRHx6uYY7YcRsV/Pwz0wIr4fEb8f6S2KiFUR8Y3mOOynEXFsc/2hEfGrpmfpNxHx4Yj4o4g4NSJ+GxH3mqXnurB5zJ812724ue8pEfGW5vn+bOTxI+KEiHhJz2P8rGn7oRHx64j4H+BnwG2m/teZ3wxT7R0LfLmU8hvg6oi4e3P90cDflVLuADwcuLSUclQp5QjgyxGxGHgb8LhSyt2B9wGv7tnvolLKvahnH1Jz3RXAw0opRwNPAN46y89NkiRpUCwDPgA8oZRyV2ARcHwp5a3ApcCDSykPLqW8DNjY9GA9OSLuRD1u+sOml2sb8ORmnyuBH5ZSjgK+Azyn5/EOoJ4wfzTw2ua6TcCfNcdiDwb+MyKiue0w4D+Bw5vLXzb3fwnj95Q9oGfo4lnAnwJExKSeK7AGOLCUckSz3ft79r2ieb7Pox5n7sofAO8spdyllHLBJLZXD8NUe08CPtb8/DF2DPU7rZRyXvPzT4GHNb1NDyilXA/cETgC+Frz4fln4KCe/X6q+fcnwKHNz4uB90TET4FPAHee+acjSZI0kBYC5zUnsAFOAh44ifs9FLg7cHpzzPVQ4HbNbTcBI/OWeo+5AD5TStleSvkFMNJjFcBrIuIc4OvAgT23nVdK+WkpZTvwc+AbpZRCPQ7s3W+v7/YMXVwDfK65/o6TfK6/B24XEW+LiIcDN/Tc9lGAUsp3gN0jYs9x2jDiglLKD3exjcbhvJ4WImJv4CHAXSOiUD/kBfgCsH5ku1LKbyLiaOCRwL9FxDeATwM/L6Xcd5zdb27+3caOv8+LgcuBo6gBeNPMPiNJkqQ5J4CTSikvH+O2LU3ggZ2PuWDHsdjIPqD2aO0L3L2UsiUizqf2mI3efnvP79uZpWPtUsq1EXEU8CfAc4HHA88auXn05sBWdu5EWdbz83rUmj1T7TwO+GAp5ZBSyqGllNsA5wEP6N0oIlYDG0opHwJeTx0C+Gtg34i4b7PN4oi4yy4ebw/gsuaMx1Op4U2SJGk+2AYcGhGHNb8/Ffh28/ONwG49225pplQAfAN4XETcGurJ8Ig4pGUb9gCuaILUg4G2+9mVXzOJ5xoRtwIWlFI+SR3ldHTPPkbm6N8fuL4ZGXX+yDbNif7bzlL75x17ptp5EvC6Udd9Ejge+F3PdXcFXh8R24Et1DGvNzWTGd8aEXtQ/wZvpnYLj+edwCcj4mnAl/EMgiRJmj82Ac8EPhG1WvLp1Cp/AP9FnZN+aTOX6L+AcyLijGbe1D8DX41apW4L8HygzbygDwOfb6Zc/Bj41fSe0thKKZsiYpfPlTq3/v2xo/peb+/bpog4kzpNZKS36pPA0yLi58CPgN+gGRE7ejiHQ875FICU0jHdtkSSNNv8zpekyYuIU4CXlFJ+3HVbpmpYv+8d5idJkiRJLTjMT5IkSZoDSinHdN2G+caeKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4u6bkALhwGrcs6ndN0QTcthwJUppbt13RBJkjS8cs5nAvsC53bdFk3LGmBd142YqmEMU5obVnXdAEmSNCfsi8cV6sgwhqlzAVJKx3TcDk2DPYuSJPVPznkRNXDsBSwEtgDXAOtTStu7bNsM8NhwDhjWY0PnTEmSJM1hOedlwCHUHpwtwAagAAcAt2mClqQWDFOSJElzVM55MXAQNUStB0Z6obZS56csBFbnnD0mlFrwgyNJkjR37U7thdo6zu2bgGXA8r61SJpDDFOSJElzUNPbtCc1ME3kpmY7SVNkmJIkSZqbFlKP9coutruJ2jslaYoMU5IkSZLUgmFKkiRpbtpKLTgRu9huCbseCihpDIYpSZKkOSilVIDr2HVxiaXNdpKmyDAlSZI0d91AnTM13lpSy4CN1LWnJE2Ri7RJkiTNUSmlLTnnS4ADqT1Qm6hD/xb1/H5p04sl7VKzyPMC6vto23x/7ximJEmS5rCU0qac8/nASmBv6hypm4BLgQ0ppe0T3F0i5xzU4aJ7AyuaqwtwU875aubx+8gwJUmSNMellLZRh/zd0HVbNFya9cr2oy4AvRlY13PzIuAAaqi6JKU03uLQc5ZhSpIkSX2Vc15IXQcrqMPFts734WKDqOmRujWwCrhxjE22NpdlwIE554ub4D5vGKYkSZLUFznnZcAe1F4OqGGqAFub4WLr59vB+IBbQf17jRWkem2iDiPdA7hmths1SKzmJ0mSpFmVc16ccz4IOIR60L2+uaxr/t1CHUp225zznl21U7ewF3Vo32RsAPZserPmDcOUJEmSZk3OeQlwG2rhixsZe4Hg7dRQtRHYL+e8T/9aqLHknBdTe6ZumuRdRkrw72pdsznFMCVJkqRZ0cyNWk090B4rRI1WqIHrVjnn3Xe1sWbVIurfYypGyu7PG4YpSZIkzZa9qQfXkx0qNmIdsH/TO6JuRHOZqnmVL+bVk5UkSVJ/NCW196DOpZmqQu3lWDmjjdJUbGfqPVMBzKsCIoYpSZIkzYYVTO9YcxOw93wraDBANlOD0VT+hsHkhnPOGYYpSZIkzYapVIIby8j8m2Uz0xxNRbPu17XA0kneZSm1tP2W2WvV4DFMSZIkaTYsoZY8n46RCnHqxsj6Urv6GwT173317DZn8BimJEmSNKOaoXkzcZxZaFcEQTMgpbQVuITa6zReD9UiYBVwaUppXg3xA8OUJEnSvJBzXpBzXtKPCnnNELGZEEy9CIJmUBOQLqSuN7UbdS7cMup6UrtR/0YXpZRuHHcnc5jdppIkSXNYs9bTntQ5TNFctwm4OqXUptLeZG0BFjK96m5BnTulDqWUNgOX5JyXUkPUIurfdROwaQbD89AxTEmSJM1ROedFwIHAYmAjO3p5FgO3yTlfnlK6bpYe/jrgVrQrjT5isov9qg+aUDWdoiJzjsP8JEmS5q59qSfPN7DzcLkt1IVxb51znq1qeeuZ3rHmMuD6lNK8WrdIw8UwJUmSNAc1c6N2o/ZIjaUAW5ttZlxTIns9ky+tPdoidlSTkwaSYUqSJGluWsauizdsAvaYxYVxr6KGoqkec64AbsAhfhpwhilJkqS5aSGTq4QXzFL58WaOzaXASiZ/3LmcWjnuivlc2EDDwTA1n0QsaC4LifBvL0nS3LaNXR/rjVTLm7XQklJaD1xMDUkrGD+4LaEOOdwMXJJSsoqfBp4H1HNVRBCxjIjdiNiPiNsCt9/pEnF7IlYTsScRy4lY2G2jJUnSDBpvrlSvZcB1s90D1ASq84Crm8dc2VxWUBd8XUWdv3URNUhZdEJDwdLoc00NRCuppUhHwtFWanf5WKUsFzfbLgAKEdcB11PKTbPfWEmSNFtSSltzztcBuzN2efIF1GOFvhR5SCltBa7NOV9P7aUaOU4pwE3NkEBpqBim5oqIRcAewN7NNRuZ3CJ3W5rLiN2BvYi4EbiGUvxikyRpeF1NHT63inpsMNLjs4x6QvWSlFJfT6A2w/fW9/MxpdniML+5IGIFcDB1dfP1zaXtOOON1HUnlgGHNkMAZ6vCjyRJmkXNcLlLgbXUk+irqCNYNgAXpJTWddg8aejZMzXMahGJvajD9DZSh/PNlM3UoYG3BlYRcTmlbNnFfSRJ0oBpeoJuyDnfSDOs3+IO0swwTA2rOjfqAOqY49ka61zY0Ut1MBEXO+xPkqTh1BSZsLCDNIMc5jeMao/UAdQVxfsx5ngTtdfrICLarmIuSZIkzSmGqWFT5y/tT+0tmkzJ05myhRqoDiRicR8fV5IkSRpIDvMbPntTJ492MWF0C7WM6QFEXEQprkouSdIQyTkvoK7ttAf1OLBQ/3+/Adgw2+tNSXONYWqYRCwD9qGbIDViEzXM7QFc12E7JEnSJDUhanfqccRCaqGpkSIUS4EDgS0556uAdYYqaXIc5jcs6vC+W1Mr7HVtPXBrh/tJkjT4miC1P7Av9aToOmpv1LbmclNz3VZgNbBvztllUQZIzjn8mwwme6aGx27UeVKDsB5EoX7h7ktdu0KSJA2g5gB8P+rQvl0VrdpGrRC8Z/Pz1bPaOI0r57yQ+jcbuSxqrt9OXSNsPXVY5kwui6MWDFPDoFbv25fBWi28DveLWE4p/SyEIUmSJm+35jKVk7HrgFvlnDemlDbMTrM0lqYXcU/qHPmgnrzeQh2WSXPdUuqUi8g5Xwtca6jqjsP8hsMK6vjmQRu/vJU6/lqSJA2YpldqH9pV/72JOj9afZJzXgoczI6/2Xp2ntsG9Vjwpua2ddTjsENyziv721qNMEwNhz0ZjLlSo20Cdm8WEJYkSYNlKbCYdgv1bgZW5ZwdxdQHOecV1CBVqEFpsifQN1KPEQ/KOXuCuwOGqUEXsYTaMzWIYWrEiq4bIEmSbmEVdRTJdPh//CzLOS+jVlPcRB3SN1XbqL1UB+ScV81k27RrhqnBt4ydu3cHjcMAJEkaTMto1ys1YhuwZIbaojE0c6QOoB5PTedvNdKjdUDO2WrLfWSYGnwrmN6Ha7ZtAZY1pdslSdLgWMD0TsgWPFacbSOLJ7fpkRptO/WYcZ8Z2JcmyQ/I4FvOzHzAZtMCrAwpSdKg2c70jvWCwT6hO9Sa8ue3YmarNW8C9miGDqoPDFODrBZ2WMRgD/MbYZeyJEmDZSPTO9m5kMGesz3sZmI+2kJqoZFlzc9QT8LvNgP71iTYmzDY2v59FlLDTTQX2NH1Oxu9XNvxvSSphaac74HN5aDm3/2pBwaLgMOBknP+L+r31zXAxcAlPZerUkrDcNJJ6rf1TH/Il2tJzp692LF+1FQtopZF34M6HHPkeO9G4AZq79RVKaVBW1ZnzvEAeLBNtucwqMMBVzT/Lmb8kpqF+sFdT11BeyYWeTNMSdqlnPOBwL17LkdRQ1NvMLoYuIAdVa3u39z9J9Tvtn2AewDHsiOE7ZZzPhc4DfhRc/mpi1hqvkspbco5b6b+Hz3Vz8My4AY/R7OjKTyxlHZD/JZQi1ZAPZbrtYLaK3UD9TvTnsVZNowHwIdR1z04peuGjHIYcGVK6W4zuM/enqWxLARWUtehWsiOVbJ39cFZRF1Z+1bsOIPR9szICIeMStpJznlf4Djg4dTwtJQdYeffgTOovUrjnjnNOT8FIKX07gm2WU7twRoJaS+gLmJ5JvAd4FPAGZ6h1Tx1DbCa+v/9VCymHh9odrSdHrGA2nu/lbED8mbqMeH+wEWMcUzYfDfuC5zbsg2zZQ21xPtQGcYwNahmo65/Yfwept2pZ2hHepqmEoZ6P4DLqWcw1gNX4URTSdOQc14N/BnwOOBuwJepYealwHmzEWhSShuBM5vLiU079qD2YP0R8DFgUc75k8AngR85LFDzyDrgOupwsMkeqO4GXNF8tjQ72p6EXkENSxMd922jjhrag/q3H21fZue4dV4axjB1LkBK6ZiO27GTWewpG90ztYjao7SC2rU73QOTkSC2FLgNcDntxkd7YCLNUznnJcATgb8G7gKcDLwZ+GpXB2MppeuBbwDfyDm/ArgrNeC9lzqX4CPA21NKF3bRPqlfUkol53wl9XhiD+rJ0/H+z15EPcl6NWMfhGvmtF1SZk8mdwJ9E7BnzvmiMU4ezbdj6Vk1jGFqPtnOzmFpGbXbdjszW0YTdnQLrwaupQ4LmKyRIYaS5pGc8z7Ac4HnAz8H/gP4SkppusOGZ1TTG3ZOc3lVzvlOwHOAs3LOXwXemFI6rcs2SrMppbQ953w59STsPtQhZlvYMRplUXPZDFySUhq6oVZDqM1J6IXU+VKTOQYcmSqymOlP5dAEDFODrbfy3jJq0NnE7A3F20YdArAntfv5qkneLxj8tbAkzZCc8x2BF1F7oz4NPDyldE6njZqClNIvgb/POZ8APBv4eM75EuCNwGdSSg531pzTnFS4Ied8IzuKFIwcB66nzo/a5NzCvmlzEjqY/IikQj2ua9sDpkkyTA2yUrYTsYVaZGI/ZjdI9VpPnZNVqF39k2GYkua4pqDEvwJ/DrwLuFNKaW23rWovpXQD8Kac89uohTL+EfjnnPOLUkrf7rRx0ixpwtJ6Zn6Ei6YgpbQ15zzV3qmpHAMGNbA5DWOWGaYG3xbgUGqPUT/Plq6njq3ewsTVfOrq6KU4zE+ao5o5US8AXgZ8GLhjSunabls1c5rSz//XFKj4C+CknPNPgJemlH7fbeskzWHrqCfMN01y+5EgvJSJKzePTL/YkFKyNPosM0wNsoigVltZQDdV9tZTi11sYvwP7WJuucaBpDkg5xzAY4D/BH4NPCCl9KtuWzV7mjP2H885fx74e+D0nPN7gNc0vViSNJNuoJ64nup9VjNxmBpZv2oq89/VkmsDDbaRINXlWYUtTLx6+hJch0Kac5riEp8EXgv8bUrp0XM5SPVKKW1MKb2aWgFwf+DnOeeHdtwsSXPPJmpxiKmsObWJumbYinFuH1kM+BocytkXhqlBFbEIuDX1A7OOGlq6cBP1A7tyjNvqEL92pdQlDagmOJwNnAfcLaX0lY6b1ImU0qUppWdQi1T8T875P5ohj5I0bU1v+BXUImNTcRU7hgguZUflviXUE+CXUKsyOl+qDwxTg2uk23c7teenyyGZG6jD/UZXhFkGXEcpflilOSDnvCTn/B/A/wDPSin9w6CVOe9CSumrwBrgcOD7TTVDSZq2Zi2+axj7pPV4CnAlNTRtoPZsLaYep/0e+I1VSfvHMDWIIhZQy5OPTEjcRJ1IuLCjFm1vHnv5qOsXMvnV1CUNsJzzHwA/oAaGNU2AUCOldCVwLPDfwPdyzs/uuEmS5o6rqUPyxhu6N57N1F6qi6jhai1wvuXt+8swNZiWU4NK74fhKqbeDTyTNlMD3ogVwLWUMu/PWkvDLud8f+C7wPuAY5vgoFFSSiWl9C7gQcA/5JzfmHP2/1ENvJxz5JwX5py7OimrCTTD8dZSA9Uqpr421ErqSfeLm+qk6iP/ExhMe3LLohMbqR+yrgLV1uaxF7Mj6FklRhpyOefHA58CnpZSeodnNHctpfQL4A+Bu1Or/43utZcGQs55Uc55L+B2zeX2OedDc86rPBEwWHoC1VrqCesV7DpULacuvnwNBqnO+EEaNBELqR+gsSr4XU39m3W1mvV26kTHFcDllOJ4XGlINWeq/4Fa9vyPHdY3Nc06W39MrXj69ab6oTQwcs4rgdtSCxJsop6QXUf9v/wA4DY556lUkRsKOefdc87Hdt2ONpre7xuoxX+upoalldTeqhU9v49cbgDOSyldbbGJ7himBs9EX2xbqWNipzJJcSZtA/YGrmca5TabtWskdaQZ6vMW4JnA/VJKZ3XbouHUFOd4MvA9amGK23XcJAmAnPMy4EBqiNrAztMGtlL/D18IHDiXhv7lnPcFvgU8rOu2TEdKaWtzwuZ3wIXApdTpHldTe64uBH6XUrrSRXm756K9g2cxO3/pjTZSJn0P+r9Y7iJq266glOkMBToJ2JcaDCX1UXPg9AHgIOD+KaXrOm3QkGvOBv9TzvkC4Ds55wenlH7bdbs0fzUnLA+gznWeaATJJmpvxx7MjWH7S4HvUIct/3PHbZkRzbDrzc1FA8qeqcGznIm//KB+6d1Af3uollGHHl7D9IcZ/ifwB9RAJalPmoOsE6lB6lEGqZmTUnoncAJ1yN+h3bZG89xS6onZLZPYdiOw5xwYMbIIOBI4KaX0Sud+qp8MU4NnGbULfleupg63W8Xs/x1XUNu0ljrWelo9mimls6kLgv5Bzvkx02+epF1pDpbeBNwFeExKqd8923NeSum9wOuBb+ScD+i6PZq3VjG54wioo00W0W214GlpCsDcFbgmpfTartuj+ccwNXhGl0SfyNXAZdQvwaWz1JaV1NB2KbXHrDAzBTDWAz8F3pdzXjMD+5M0sX8CHgI8MqXk+nCzJKX0duD9wJdyznvsantpFixh1yNcehW6W8dyWpphyx+hDln8XcfN0TxlmBpMU+me3gBcTO3OX8HMzIML6nDDxdQQdU1Pm4KZqyZ4I/B84LM55/1naJ+SRsk5PwP4G+DhDu3ri1dTi1J8Juc8Gye6pHmv6W1/G7A78KuOm6N5zDA1N2yh9lBd3vy+gnpmaqpGeqKWAtdSQ9qmUdsUphb2JpRS+jjw39RANf21WiIWErGEiKVELCZi2MeBS9OSc7438B/UIHVp1+2ZD5r5Gn8HXAe8sdvWaB7axNROrAZT68kaFK8A7gf8GTN4XCJNlWFq8ExnGN0G4BJqsBrpqVre/LuY+vceWadqATvGSY8sDreAGsgupA7tG+/Ldaa/tP6V2j3/vlaTYGt42oeI2wK3Bw4BDqaur3E7Ig4gYoXBSvNNs/bRx4HnpJR+3XV75pOU0jbgGcAf55z/suPmaH4ZKXs+GQuoxwujT5wOtJzzY4HnUIct39B1ezS/GaYGz1TPKI23j7XABdRgdSW1Et9IgBoJVtupZ04vowaoi6lfwhOFpRk/g9WcxX02Nfz8y6TvGLGIiP2BQ4E9qf8hrKM+h5HFCTdSe9oOAg4lYsUMNl0aWDnnBcAHgY+nlD7bdXvmo5TS9cDjgLfknO/cdXs0PzTrn21icnOplwPXDlP1u5zzbYB3Ao+3t12DwDA1eDYwc+t/baeuTbAOuILaa3VRcxnpwbqe+qU7mYBUg1Qpk60SNGkppY3AccDxOef77bolsZza+7SCHaFpvNW/b2q22QbcpunFspdKc93Lgd2oQ2HUkaZ66T8C/5dzXtV1ezRvrKX2Ti2eYJvl1P87h6Znpyk48UHgLSml07pujwSGqUG0lZkr8DDTFlO/eGdFSmkttSDFB3LO46+hVXuXbkN9raYyNGErtejFPsB+BirNVTnnh1I/S09IKU1mrRnNopTS+4EfAv81B9bz0RBIKd1EHW2ygDoXuvck7VLqiZZNwGXNwtPD4h+bf1/XaSukHoapwbOFwQ1Ti6g9Z7MmpfQp4DTg38fcIGJkyN5GJr+OxmjrqCu+79Py/tLAaspxnwQ8zSEwA+VvqWvhOH9KfZFS2sSO4f5BDVXLqSHqwpTSJc3cvqGQc74n8CLgqcPUbs19MzWcTDOllC1E3ETtnh+0L4sF9GeS6guAn+acP51S+tbN19aepP2pw/am+9rUHqqI9ZQya71tUgdeDXwppfT1rhuiHVJKG3LOf0Utl/7FlNK1XbdJc1/T67SuuQytnPNu1PWknp9Suqjr9ki97JkaTNdQzx4NkoXAFkqZ9TDVHGT8NfD+nPPuPTftRh2ecNMMPdQmHO6nOSTnfC/gsdQFejVgUko/Aj4FvLbrtkhD5t+A76WU/q/rhkijGaYG0wYGb82EZcDV/XqwlNIXga8xMi66Bp59mNlhhluo63ENWnCVpiznvAh4N/DSlNI1XbdH43oF8OhJFdqRRM75cOrw2Jd23RZpLIapQVSr5d1ADTCDIpjl+VJjeCnw2JzznaivxRLGr9jX1hbq/Clp2L2QesLjw103RONryqX/PfDunPNEldYkVW8AXptSuqrrhkhjMUwNrmsZnDltK4GrZ6Mk+kRSStcB/wG8pmnDbFQl2wysIsLPgoZWzvkgao/H84ZpvZh57OPU5Sle1HE7pIGWc34YcDjw9q7bIo3HA8hBVcpN1MV2xy8R3h+LqFXzupos/Xbg7p859tj7MzthCmqvm2eINcxeAbwvpfSbrhuiXWsC798B/zhqXqikRjN0+Y3Uocubu26PNB7D1GC7nhpkuuyhWg5cTimdrEORUtoU27e/6rIDDnjllkWLZqu6YWFwegGlKck53wZ4IvD6rtuiyUsp/Rr4MrV6qaRb+ivq0OXPdNwOaUIeQHalrpe0Brh38+/u1F6oJdQqc+upVf3OBi5q/u13qfSVwPWU0u+5Ujs5+owzPnThbW7z8o896UkPe+oHP/i1WXoYTyxoWL0MeE9K6cquG6Ip+zfgeznnt6WUbui6MdKgyDmvAk4AHjlMQ5dzziuAo4FDqSejl1NHv2xsLpcAP/bzPrcYpvolYm/gkcADgAcBt6N+sJYwcaGJ9dSiC0uA3wKnUhe1PYXZXfNpedO+K2bxMSbl0SefvP3Txx33hgsOPfQVG5ct+/ryTZuG5otVmk3NXKknAXfsui2aupTSr3POX6Eu6PuartsjDZBnAaemlM7ouiHjyTkHdT7XfajHdfcHDqEW6wrqkjILmp+3UY/ltgErcs5rge8D36Ie053jQsTDy7Pxsy3iDkT8N3Ax8E7gOdQDn8XU3qhdVexbyY71lY5o7v9mak/VPwG3moVWL6MOL1zb1fC+nZSy/TGf+9w3KWXjJx/3uIfO0qN0/zylqXsZ8F57pYbavwEvahYllea9Zq7UixnQocs556U556cD5wKnA28Fng7cntpJsTv1uG0F9XhqafPzKmr14MXAbYAnUOeEfQe4OOf8wqZHTkPGMDUbIoKIBxPxTWroeRq1p2c36hmK6VjQ7GcVdWHbH1FD2uHT3O+IldQgdUm/q/dNZNH27ZtvddVV7796773/apYeYraKW0izIud8AHXtlTd03Ra1l1L6FfB14Hldt0UaEI8DLk4p/bDrhvTKOd8q5/wqYC21ONbtqMdM0wlAIyFrf2rv9Nqc8xubUQcaEoapmRZxD+BXwOeAY6hnJWZrOOWy5vJo4AvAJ4HVLfe1iBrSrgEuHqQg1Vj/qJNP/sr2hQvv8LnHPGamguOIgmFKw+cZwP+llDofiqtpexPwNzln/0+W6pp5b+y6ESNyzityzu+gzl9/GbAn0wtQ41nZXJ4H/Dbn/L85571n4XE0w/zinimlsNc11xxM7a79A+oHbbq9UJO1kBqq7kGdS/WnU7jvAuqHdxFwEaVcPRBD+25pw17XX799+caNH7ro4IOfNoP7XUYtsuE8LA2NZqz+s4D/7rotmhE/BtZRT8BJ81bO+W7UIXCf77otADnno4BfAM+kHi8s78PDLm0e61jgNznnB/fhMTUNhqmZEHHQ6ksvPXq3G288hB2VW7qwiBqM3kgd+jfRGlWLqYFvMXA5cEHXVfsmVMpmYPORZ531ic1Llx77u9vffqa+0BYDN87QvqR+eSBwE3XisoZcU63sv4Fnd90WzU8RsW4G9vGnEfGyKWx/TERcHxFnRcSvIuINwPHAu1NKuxwd09z/ZIAvfvGLh37961+/TfvW7yznvCDn/A/AD4CD6U+IGm0psA9wcs75DTnnJR20QZNgmJquiMcCv1i8ZcuqKGVQXs/lwJ8A3wXuyY7hgKvY0Y1c50XB+ZRyA6UMQxWZK+/3wx9et2jr1h9/+0EPeswM7G8ZcCOlzGZVRGk2PAv472EqGaxd+hDwqJzzXl03RGqjlPK5Usprp3i375ZS1gB3Ax5zwQUXPAl474w3bgpyzvsD3wYy3Z4gH7GCGjLPyjnfoeO2aAyDcvA/nCIy8D/MTGGJmbYM2A/4KHXoyHXApcAFwLmUcgmlrB+q4W215+z6Ay655P9u3G23J0xzb0HtybMKmoZKznkP6vCPD3bdFs2clNLVwFeope6lvouIVRHxjYg4IyJ+GhHHNtcf2vQcfSAifhMRH46IP4qIUyPitxFxr2a7Z0TE25uf942IT0bE6c3lDyd67FLKxr333vuKK6644vyU0tqI+OOI+EHTlk9ExKpmvw9v2nIG8OfjPI/nRMSXImJ5RJwSEa+LiNOatj+g5zl9t9n/GRFxP4DDDjvsie9973sv/NCHPvSHb3vb21Z+/vOfZ/v2OvPh1a9+NV/+8pd5xzvewUknncT69etn5oWfnBXUStA/zjnfvZ8PrF0zTLVVg9RLqG/wQbacWnXmIZSyjlJuGqoAdUtXPeB73/sOpRzxk6OPbnsGN6i9dJdRioUnNGyeAHzdcuhzkkP91KVNwJ+VUo4GHgz8Z0SMnCg+DPhPauXgw6mVRO9PPQ56xRj7egvwplLKPYHHsovepojYq5Ry5wMPPPAjEXEr4J+BP2ra8mPg7yNiGfAe4DHA3akV8Ebv52+pRbmOK6VsbK5eVEq5F/AiIDXXXQE8rNn/E4C35pxve7/73e9dl1122eJHPvKR8fznP59rr72WX/7ylwBs2bKF1atX8/znP59DDjmEU045ZaKnNBtGqjl/K+d8dL8fXOMzTLUR8UqGI0iNWA78DxFTKUwxmErZuv/ll/9u6ebNP/jNHe7wJy32sJAapC6nFOdKaRgdB/xv143QrPgGcEjOecbmfkhTEMBrIuIcarn+A6kjXADOK6X8tNQCVT9fvHjxKSeccMKKgw466Fzgtk1RnF5/BLw9Is6iVjfefaR3aZQHRMTZwCV3utOdlq9evfqD1EVw7wyc2tz/6dTFcA9v2vHbUk8Kf6h3R7/4xS/2Ax4BPK7UedYjPtX8+xPg0ObnxcB7IuKnwCeax/vBggULdj/wwAPZe++9WbBgAUcccQQXXnhhfXEiuMtd7gLAkUceefP1HdgNOCXnfKeuGqCdGaamKuIp1LMwwxKkRiwHPkrTHT/USrnpmn32+fjV++zzYGowmuz7eDl1QufFlHLdbDVPmi055+XUs8Ff67otmnkppW3AV4GHd90WzUtPBvYF7t7MY7qcOmUAYDNAznnZ0qVLl+6///57AAcedthh+y5cuHA5cMjy5cuX9uxrAXCfUsqa5nJgKWWsIhffLaUc9ed//ud/feaZZy4+4YQTbkUNdV/rue+dSym77LHdZ5991lPD0ug1mkaC1TZ2LFXz4ub5HfXUpz71gRGxHNgbWLCjM64a/fuuru+TldQeqv12uaVmnWFqKiKOAf6L4QtSI1YAXyHidl03ZLq2LFny+atvdav7//62t72KeoZpN+qX/sKezQJYwo5F8W6kVi3s60BnaQY9CDg7pXRd1w3RrPkS9ey61G97AFeUUrZExIOpvUE3yznvBhyyYMGChZs3b94ErFu/fv2Gprdq+5577rnX0qVLlze9VF8FXjBy34hYM9EDH3nkkfe9wx3u8BXgn4AfAn8YEYc1910ZEXegruF5aETcvrnbTvML99tvv3XA3wCfi4hdrbm5B3DZCSecUNauXfv9ZvbDYoBLLrmEa6+9lu3bt/Pzn/+cgw8+GIBSCr/4xS8A+OlPf3rz9R1ZQA1/38w5L93VxppdhqnJitiD2lXcRXnMmbQb8Gkihvpvn1K6nIhfffDpT787cD5wMXADO9bNWkkNV5upY6N/TylXOEdKQ+7hwJe7boRm1VeBh+ScF3fdEA2/nPMdcs6Pzjk/Mud8yFjbRMQi6v+VHwbu0Qx9exo1vNy8GbAaWLd9+/axqv9u3bx586bFixcvpR7kv7DZ1zkR8QvguRO0cQFw3H3uc59XUpd9WEldlPyjzZDDHwCHl1p596+BLzQFKG6xYHkp5XvUaRhfaOZejeedwNNf97rXnb9u3bo7LF684+O2evVqvvjFL/KOd7yDPffck8MPPxyAxYsXc8kll/COd7yD8847jwc96EET7L4vFlMD78u7bsh8t2jXm6jxBoY/SEHtubk98Bzg3R23Zbo+BzyGUr4GrG8uV3XbJGlWPQKrvc1pKaXLc87nAvejlmeWpizn/FDgX4E11DXpAJbmnL8D/EtKqXeNursAvyulXAXcd5z9PRIoQHn5y1/+4pHrH/WoR138qEc96iEAL3zhCz8OfBzY54QTTjgvpTRh1d1SyinUuT9HA+tOPPHEs0888cQDm5vPpy7tMvo+X6bOndrJIx/5yPN7tvkKtTIm9CyE3Ty/Q5uff5tzPgb4PbD4T/5kxxTspUuX8uQnP3nMNj/84QM3Ancl8I855w+llM7tujHz1VD3TvRNnWf0ZHaMHR52K4E3EDHsY22/TJ3kKs15OefbAXsCZ3XbEvXBl3HelFrKOf8d9WTjfakngfdoLsuAh1Hn2jweICKeS11C5Z8n2N9S6nzjXS6k29hOPc6YrHsDp05h+5nyZurzGnZLgA+MUQREfWKY2pXa/f1h5k6QGrEEeFfXjZimn1ErX41VIUiaax4EfCOltL3rhmjWfZ2eM+rSZDU9SP/O+HO7o7nt/Tnne5ZSTmwKPHx1gt2uoBZvmKzN1BM/k3VP4PQpbD9tOef7U0u273Rsd9vb3nbcXqlXvvKVfWhZKwupPZCOWuiIYWrXXgwcwOAtyjtdS4A/IeJhXTekrZTSFuDn1C8Raa5bA5zRdSPUF2cCRzRzSaSpeCOTm5Kwghq6JmMxtbdpsrY195msvoapZj7iBxneYmJjWQm8M+fcdv1NTYNf1BOJ2B84gal1Vw+TFcAHmt63YfUTwMXrNB8chUP85oWU0vXAldT5rdKk5JyPBKayRtn9c863WPh2hkwqfOWcV1Lf5+fMUjvG8jhgouIUw2op8LyuGzEfGaYm9mzm/mu0G9Bm8dtB8RPqSujSnNWMhV8DnN1xU9Q/Z2Ovu6bm4UytR+gmJjfveBM7LzuyK4vZUfRiV44GfpZSmuz2M+FF1OVSOpdz5l3vehfveMc7+MhHPsLGjRsn3P79738/l1xyyS2u/9a3vsWpp566DHh+79ypiFgdEf83lTZFxLqenx8ZEb+JiDErQaqa60Ghvboa2/MZsLlSIwNjjwD+AtgwwbanAN+f4PbPAa+tYeqFY90eEYdGxM8mak9E/D4i7jjqujdHxD9FxHMj4mm7uP8ut9mFMzBMae47BFifUrqy64aob87CMKWp2ZuphalFTG5u00amdry4FLh2ktv2e4jfbYEj+/V4u7Jo0SKOP/54nv/857N8+XJOP33aL8VuwANGfimlXFpKeVybHUXEQ4G3Ao8opVww3YbNZYap8T2Q+qYcKMup/8P+jDrp6cQJtj2F8cPUVuBPgZfVXx80jcp+HwOeOPJL1PWrHgd8rJnY+j8T3Xm8bWLyQw9/Btwu5zyXxj5Lo63BIX7zzVkYpjQ1NzK1QhHbqUuKTKiZn7yOyZ1cXtC0YaJzvb3uDvx4ktvOhL9iQOfAH3TQQdxwww0AXHbZZbznPe/hne98Jx/72Md26rE655xzbu7Nuvjii2++/vLLL+e9733vqje84Q1fiIjnwM4nxSNiYUS8PiJOf+tb33qP7373uweM15aIeCDwHuDRpZTfNdc9JSJOi4izIuLdEbGwuf5dEfHjiPh5ROSefZwfETkizoiIn0bE4c31KyPifc2+zoyIY2fsReyIYWp8f8uAT058AHAu8HlqXdG7UfvrL6cu0HAi8Cbq/8bfpa6A99xm238EPkB9ksD2c+B5EfHpiDi7udyv97Ei4nbNm370ug8fBXrXknggcEEp5YKIOCEiXtLc//YR8eWI+ElEfPfSSy9d0Vzfu80pTa/Wj4G/i4jHRMSPmsf9eowR+JqhAb8D/mCqr580RI7CIX7zjcP8NFXfo/YiTdaC5j6TcSU1hEzU8xXUOeaXT6Hq6KHUQ5lZl3NeSD0MGrhy6Nu3b+e8887jjnesA30+/elP87CHPYznPe953PrWt+aUU065edstW7Zw/PHH86hHPYrPfvazN19/+eWX8/SnP53jjz9+EZAiYvWoh3k2cH0p5Z7HH3/8T84+++zVEXHbMZqzFPgMcFwp5VcAEXEn6rHeH5ZS1lAD80jZw1eWUu5B7fF7UET09vxdVUo5mlo9+iUj2wPfLKXcC3gw8PqIGOraBIapsUTsATyaAX59tgJfAu4K3B/4IbX80xOB/6B+Oz2XWorwLHb0+V5M7a164867W/4qeGnAt0spR1HHMP985MZmGN8ngWeUUnbqgy6l/BTYHhFHNVc9kRqwRvsv4AWllLsDLzn55JPHCz9LSin3KKX8J/VL/j6llLtRe8D+cZz7XEatuCjNVbcBzuu6Eeqri4Bb55yHuUCQ+us71N6pyfpVSum3k9mw6Z26mDrbYCW3PD5a3lx/aUppHZO3GrjlJKDZ8UdMbRjkrNu6dSvvete7eMMb3sC6deu4/e1vz6ZNm9i0aROHHnooAGvWrOGCC3aMsjviiCMAOPTQQ9m8efPNvVZ3vOMdWbx4MStXrty2//77XwTca9TD/THwtIg4613vetfdN23atIixT0RvoR4qPrvnuodSexFPj4izmt9v19z2+Ig4g3oYehfgzj33+1Tz709oFkxu2vGyZj+nUHs8D57whRpwAxsWOvZEptZV3jcbqacq70F95z2b+u32J9Rg9Xp6UtAY/oKxZ5F+D5Zd0JRdLqVsK6Vc39y0L/BZ4MmllPHOjH8UeGIzNO844BO9N0bEKuB+wCeaD8+7N2zYsGScff1vz88HAV+JiJ8CL6V+SMdyKfULWZqr9gfWdt0I9U9KaRtwFfU7WNqllFIB/h+TGLpHHYaXprj/zcAF1AEwi6lFHFY2l+uA81NKkw5zTaGEA6gnRPvhEQxI4YkRI3OmXvSiFwFw2mmn7fI+dUr/LX/vuX7lbrvtdjBQRt+VelJ7zQtf+MIfv+QlL/nROOuLbQceD9wrIl7Rc9+TSilrmssdSyknND1bLwEeWko5EvgCOw8H3dz8u406R29kX4/t2dfBpZRf7vKJDzDD1NgezYCWQx+ZM3UW8DbqvKkXUIfr/RR4N7XsznjGe1IBsXtdFHS064ELqR1g4/kY9YP3R8A5pZTLR92+ALiu54Oz5kUvetF4syx7/xN4G/D2Uspdgb9h/PHa9kxprtufegCj+eVy6t9emqx3Ax9n4kC1HnhDSunzU915SmlbSukG6myC31N7zH+XUrq6RUW+fYANKaWpDE2cjvsxoPOllixZwiMe8Qh+8IMfsHjxYpYvX35zb9TZZ599cy8VwM9+VuuCXXDBBSxbtoxly+qh0a9+9Su2bNnChg0bWLt27f7csrDHV4DjI2IxwGWXXbZ8vOF1pZQNwKOAJ0fEs4FvAI+LiFsDRMTeTYW/3anvp+ubqRiPmMTT/QrwgmjSX0TcbRL3GWgOHxjbUP1hrwcObH4+qef63YAbJrmPhwKvgye+Bv61mVQ4cvbmJuDPqD1E60opHxl931LK7yLiKuC1wFvGuP2GiDgvIv6ilPKJiIhnPetZKw8++OBdnT3bgx3d/0+fYLvLgDvsYl/SMNuPedgzlXNeQj1nNJAjBfpgLYYpTUFKqeScn009v/rP1B6kFdReio3UYYCvSCmdNP5eJvc41BkH07GaOrJk1jW9YHfqx2O1dcABB7Dffvvxs5/9jOOOO46TTz6ZLVu2sNdee3HcccfdvN2iRYs48cQT2bZtG8ceu6N2w3777cdJJ53Ehg0beNCDHlTucY973HjCCSfs0/MQ76UOtTvjLW95y+2WL19+ExPkgFLKNRHxcOrw0b+jvp++2hQa2wI8v5Tyw4g4E/gVdWjyqZN4qv8KvBk4p9nXedROjKFlmBotYgX1wGVonEAdvrcX8BB2TKx4DLWs3mepXTwTeQvwDLhdM6RuG3A8Tdd7KWV9RDwa+FoTqD43xi4+Sg1TnxrjNqgTFd8VEf8MLP75z3++fBJh6gTq0MBrgW8CY02UpGnnWL1q0tDLOS+gfifNm56pnPPBwMupJ1GWApFzPg04IaX0xU4b11+GKU1ZE3TelHN+O/VQ4I7U/9d/Bnx5CsUhZls/50utZmprZfXFK1/5yp1+/8u//Mubf37Oc55zi+2f+cxnjrmfBz/4waOvWgccWUo5lbqaDqWU7cArgFfknE+BmxcI30kpZVXPzxex87HX/46x/TPGalMp5dCen38MHNP8vJE62mjOMEzd0hHUscS7d92QsYw1q/PY5jLaHdh5SfEHjLr9Gc0F6pHal+r74T6U0htyRj6E11HXgxhTKeXN1DMNvded0PPzedQFBQEY+SCP2uaYUff/LDUL7orD/DSX7UVdY2rzLrecA3LOR1LPhK5g58ni9wQ+nnN+c0rpnztpXP9dzpCd3NPgaIpGjHeCcxD0rWeKOt38JupsiflgCfU5T6anSNPknKlbWsP8DZkbqHUshs1VwK26boQ0S/alliWe85r14r5GPZk1VtWtlcCLc85/1teGdedK4NZdN0KaJXsx+cV9p+tuDPhyNzNsOXDfrhsxXximbunezK8PXK9F1PVshs2E436lIbeYHRWR5rrHUr9/J5okvgJ4VX+a07mbGLBSztIMWkyde9MPd2X+fZbuvOtNNBMMU7c0VMUnZtgKhnORyK0YpjR3LWL6E72HxfOYXOniO+acx5tDOZf43aa5bBH9C1MDWaF5lo1XAVkzzDB1SwO1BkEH9ui6AS1sZf6dcdL8sYj5U83u0Elud9MUth1mhinNZf38bpuPI44MU31imLqlpV03oGPD+IUT1EXmpLlo9MKLc9lUeuCmuqbNMPK7TXNZoX/rPs3HYztPMveJYeqW5uMHrtcwhqnFzJ9hUJp/5lPP63eYXHhYSl1HZ66bT0M8Nf9soX89r/Nl3mmvfg2hnPcMU7c0X4bTjGcYn38/x11L/dbPA46uvYO6sOhEtgOfTSlNdk3yYWaY0lzWz2GsG/r0OINkU9cNmC8MU7c0H4aOTGRXBzKDaDnz86yT5oeNzJ/J0z8AvsXE30PrgVdOcPtcspL5eRCo+eEm+jevZ/2uN5lzDFN9Ypi6pfn+5hvG/7j3B9Z23QhpllwO7Jdz7tfcgs6klArweGqg2sDOQ/7WAdcAD0kp/a6D5nVhP+rfX5qL+rko9U+ZfyNYftF1A+YLw9QtXdN1AzpUGM5QcgBwWdeNkGZDSmk9dTjM7l23pR9SShtTSo8CHgh8jBqirgdeAKxOKf24y/b1mSeKNJddCqzu02OdyXCeLG5rI7WnX30wX8bhT8UPgPswP4PmOuCMrhvRgmFKc91a6oH19V03pF9SSj8BnpxzPqX5/QOdNqgbhinNZZfQvzB1FvOrwNhN1OesPpiPgWFXfsL8HFsLtUTpWV03ogXDlOa6tfRvOIwGh8P8NJddBqzu0xDmS5lfxVxWAOd03Yj5wjB1S2fRv3UPBs1S4DddN6KFA6hflNJcNdIzpfnFninNWc0Q5s3AXn14rAL8crYfZ4BcnVK6setGzBeGqVv6DfOrK7jXeZQyjGduVmPPlOa2tdSTBponcs7LqZVKr+u4KdJs6ue8qe8zfxZBt1eqjwxTo5WyDfh9183oyOldN6Clg6ljr6W56rfA4V03Qn11OPCb5oy6NFddAhzYp8f6EnVu+Fy3HvhU142YTwxTY/tR1w3owEbgh103YqpyzntThwjM1wCs+eFs4KiuG6G+Oor6d5fmsl8DR/Tpsb7O/FhLdCG1Eqr6xDA1tk8A822saQCf77oRLRwNnJlS2r7LLaXhdTZwZM55YdcNUd+sYTgLAqmPcs5Lc84rc87Lc87DeEx3OnDPfjxQSmkb8G7qPK25ajvw+ZTSvKn8OgiG8YPXD18GtnXdiD47i1Iu6LoRLdyd4SznLk1aSuk64Erg9h03Rf2zBsOUxpFzXpFzPgQ4hDrn6CDgdjnnvYcsVPUtTDXey9yeN7UBeHvXjZhvhukD1z+1CMN7mB/dwVB74d7SdSNaOppazl6a686iHmBrjmtKRTvMT2PKOe9GnSsMdQ7Q+uayEdiHWm58WI7vfg3sm3Pepx8PllI6j7ldnOFG4LtdN2K+GZYPWxf+i/nTO7UA+EzXjWjJninNF2fhvKn54mBgfUrpyq4bosGSc15Krex5I7Bl1M2FGqqW04dy4zOhGXp3BnCPPj7sm5mbhSg2Ae+waE3/GabGU8q5zI81CbYCH6KUTV03ZKpyzntSF7X8dcdNkfrhDODeXTdCfXFv4MyuG6GBtDv1RO9EB8zrgb2GaI5lv4f6/R9wVR8fr182A+/suhHzkWFqYm9mbp696HUT8K6uG9HSfYAzmjNb0lx3CnDvnPOqrhuiWfdw4KtdN0KDpRm6twe1B2JXFlB7qIZBX8NUSmkL8BTq/KK5Yj1wfErp2q4bMh8ZpiY216v6bQVOp5RhHZf/GOALXTdC6odmNfsfA8d03BTNoma+1MOphZCkXguolXcnM4xrO7BodpszY74HPCDnvLhfD5hSOhX4JJMLpoNuG3UYuOXQO2KYmkgd+vYM5tbZi15bgGd23Yg2mgOOxzCc5dyltr4EPKLrRmhWHQlsSCn9tuuGaOgNxZIhKaVLqQuTH9Pnh34Rc6NM+k3AM5wr1R3D1K6U8lXqcIu5VtlvPfBqSjmv64a0dBT1b/Krrhsi9dGXgEc0JxM0Nz2C+neWRttGHVEymblQC7hlgYpB9mngz/r5gCmla4DnU4+HhtUG4HUppXO7bsh8ZpianOMZri+lybgS+I+uGzENfwp8zjMxmmd+BiwB/qDrhmjWOMRPY2r+v7sGWLaLTUeC1DANYfs0cFwHJd0/Anyf4XqtRmwBzgf+veN2zHuGqckoZS3wUob77EWvjcBTKGWYA+Kf4hA/zTPNwdSXgUd33RbNvKZC6d2pxUaksayj9k4tmWCblcCVw3SyMaX0a+A64F59ftxC7RE7j+E6ab6dGqwfklKaayOnho5havLeDZzLcH3YxrIR+DilnNp1Q9rKOR8I3I46aVWabz4GPM2hfnPSXwJfSinNlRN3mmFN9dpLqcdvK9n5OG4ZsAq4IqU0jJWI+z7UD6D5vD2EGk6GpTrweuDBKaXLu26IDFOTV8p26lj265hcJZ1BdBN17azndt2QaXoidYjfsAdbqY1vUssj363rhmjGPRv4764bocGWUtoMXEgdrr+UGqpWUufPXDjE5bE/DfxZFyeKUkprqcutDEOguhE4JqU0H9ZCHQqGqako5TLgwQzn2lPbgSuAPx7GBXpHNF+yzwHe23VbpC6klLYD76ceeGuOyDmvAfYFvt5xUzQEUkpbU0rXAb8Hfgecm1Jam1Ia2v/fgZ9Qj0s7WZw8pXQ+dZjh1QzmKKTt7AhSZ3TdGO1gmJqqUn5Ona8wTMMwtlHPtjyIUq7uujHTdH/qF8rQDlOUZsAHgCfmnIdlUU7t2rOB97sIuaYipVRSStuHaX7UeJrncCLwvA7bcD61WvAPGazjvA3Ar4G7G6QGj2GqjVK+Qw1Uw7D+1HbgWuC+lPL7rhszA54LvGcu/MchtZVSuhA4Hfjzrtui6cs5LwOeRO1xlOaz9wN/mnO+VVcNaIb8HQO8ijrPvOvjjY3AO4GjXH9uMBmm2irlFOBR1C7Xrd02ZlybgMupQWro1yDIOa8GHokHHBLUuTXP6boRmhF/DpzZnBWX5q2U0tXAZ+j4u63p7XsjcF/gAmqg6bfN1CGHj0wpvdR54oPLMDUdNVDdBTizRAzaSuMbgM8Bd5wLQarxPODDzThxab77LHBozvm+XTdE7TXr6rwMeEvXbZEGxJuAF+Scl3bdkJTS2cCdgfdRT1D3I1Rtbh7rM8AdUkqn9OExNQ2Gqekq5SLgvjfuttuFpQ6p69pWaoGMZ1HKEyjlxq4bNBNyzquoZ6re2nVbpEHQrC3yGiB13RZNy59RD56+0HVDpEHQBJifAk/uui0AKaWNKaW/BQ6iLpB7HbNTiGx9c3kH8AcppSemlK6ZhcfRDDNMzYRStl27994XXLHffmcBl9DdStrrgXOAIyjlfztqw2x5MfCNlNJvum6INEA+ANwp53yfrhuiqWt6pV4FZOeBSjt5PfCSnPPCrhsyIqV0dUrpX4H9qCNlzqUed00nWI3c/zJqD/X+KaV/SCldPN32qn8Wdd2AuWTT8uU3Ag+inil+LhDUtR9m20bqsL5/A95GKXOiGlRE3AU4ccGCBSuOPfbYPzjqqKPWdN0maZCklG7KOY/0Tj2i6/Zoyo6jlmC2V0rzRnMSYSWwF7CYOqrnOuDGlNLIHPRvUKsQP4MBW3utGRXwwZzzh4DDqaXcHwg8ADiUejwW1A6LkTC4nVpZeTuwghqeTgVOAU4DzmmWvdAQMkzNtFLWAS8l4gTql8ArgN2pq5LPphXAXwGXEPFpShnUohiTVmoZ+gfknN8CnJpSmgvVCKWZ9n7glTnn+6SUfth1YzQ5Pb1S/2KvlOaLZh7UamqIGpmDtADYB7hVznltSunGlFLJOb8Y+GzO+eMppYGbstB8bn/ZXD4A0CxXcTQ1VC1vLkF9nhuBS4Efp5Ru6H+LNVsMU7OllDruNeJd1Kp/rwKOpH55rGBmX/uRtWbuQj2D858RcSB1zPEi4DzgqaWU68bbQUScAryklPLjNg2IiEOB+5VSPjLObb+krpGwBPjOq171Ks4555x9IuJlpZTXjrffZcuWfXXfffd98F/91V8d2LO/51LP/KwGflFK+VybNktzQU/v1L/lnB/mgfnQeCz1TPXJXTdE6oec82LqvKORud0jtrOjN2d1zvnilNL6lNLpOeevU4e/vbLvDW4hpbSR2uPkWpjziHOmZlsp2ynl85RyT+BA6loi/w58nx2TDa8HbqB+uWygTkZuazfgoJWwoMAnCtyV2lX+/Gnsc0IRsYh6FuYvJ9jsd6WUNdRAeeezzjrrVmvWrLl6rCDV7I+I2HPhwoX3u+aaa64/4YQTlo3cXko5sZTyP6WU1xqkJKCeRNkPeHzXDdGu5Zx3A94IvNjwq3lkb+qaTeOV+C7UY6D9cs7RXPcK4Lk550P60D6pFcNUP5VyFaV8kVJeRSl/SA0+dwOeSq1U9wLqOOGYYC+TMXL/lwPvDfgBNcgREWsi4ocRcU5EfDoi9uq531Mj4qyI+FlE3KvZfmVEvC8iTouIMyPi2Ob6Z0TE5yLim02bXws8oLn/i8d/CcpW4PtXX3318h/84Af7R8Tbm/19ICJOjIgfAf8BcMghh/z9ne50J7Zs2fJe4IkTPuGIF0bEL5rn9bGpv2TS8GrWH/kb4I055z07bo527V+Br6WUvtN1Q6R+aApJ7M6uC3Rto46oWQ7QFGJ4G/UYQxpIDvPrUikF+G1zgYjjgYdSh8LNhJVb4Qn3gD88HV7UXPc/wAtKKd+OiP9Hnbg+ctuKUsqaiHggdU2FI6hd698spTwrIvYETouIrzfbHw0cWUq5JiKOoQ4TfPREDYqIFcBD999///Xr1q0b/TwPog4V3JZzXrp9+/a/33vvvd+4ZcuWjwEfpglZ43gZcNtSyuamndK8klL6fs75ZODVzGJPtKYn53x36smhI7pui4ZLznkJda5RUIfGbRqiogXLdr3JzbZSC1RsaH5/PfDrnPP9Ukrfn/GWSdNkz9SgiFgD/Cd1PtW0bQTWAAfAyiXwB+tgQUTsAexZSvl2s9lJ1Ao0Iz4KUEr5DrB7E0r+GHhZRJxFrTqzDDi42f5rpZTJroFw+2YfpwJfuOtd7zrW/T5RmkqEV1555X9cc801cdNNN6VSyi+o7T98gv2fA3w4Ip5C/SKW5qOXAX+ec7531w3RLTVn598NvCyldFXX7dFwyDkvzzkfSB1Ovxo4gHry8bY5570GqXz4BKYy4mY7O6rgkVJaD7wEeE/OeUaOkaSZZJgaBBELgQ8xtTM3E1oOnAVcAAQseBd87Fk7ClWMZ/TY/VLvzmNLKWuay8GllF82t6+fQpN+19z/bqWUE8bZZj1Azvm+v/3tb5+5fv36bd/+9rfPi4jzqQHuSRPs/1HUhe6OBk4fmXclzScppWupBx3/1Uz21mB5PnVu7EldN0TDoRm2ezB1xMo6dsy1XkcdMrcPcPAQfN5HjicmYwF1uF+v/wXOBt4wk42SZoJhajA8m3rGabpzpW5hBfDWeln1jjqc79qIeEBz81OBb/ds/gSAiLg/cH0p5XrgK8ALIiKa2+42zkPdSJ0DNi3NWaeTTj311MuAPymlHFpKORQYGRpzCxGxALhNKeVbwD8BezD7peilQfURavnd3HVDtEPO+QjgX4DnWnRCk9EUKtmP+v/rWIWpRgo2ABw44D1UUymstYgdzwu4uQz58cAjcs5/OpMNk6bLMNW1GlJewSwu7ns34CiIj8Hf7VeD2+sj4hzqSMD/17Pppog4EziRuh3UidKLgXMi4ufN72M5B9gWEWdPVIBiEl6zdu3aX65fv34VcPOaOaWU3zftu/sY91kIfCgifgqcCbx1ojLw0lzWHHQ8DXhqznnCOYzqj+ag+P+Al6SUftV1ezT4mmC0H5MbAbKZGkD2mNVGTUOzGO+N7HoEzkiv1MYx9nE98BRqz/vqGW+k1JJhqnv3Am410ztdN+r3zwPPgC1r4ZBSyn1KKUeWUo4rpVwLUEo5ppTyomYY3hGllNOa6zeWUv6mlHLXUspdRgpMlFI+UEr525H9l1K2lFIeUko5qpTypt7HLqWcX0q5xWTr+973vmtH9lFKecYJJ5ywAfiL/fff/5mllANLLdDRu5+jSik/Gb2f5rHv37TxiInWrZLmg5TSldSe3P/OOR/acXPmtabE83uA76aUHN6nyVrBjkITk7ER2LOnpPgguoZ68nOiHrSVwBXjFdZIKZ1KPeF7UrPwtdQ534jdezYzOFdqF3ajdpMPnGYIzEnAX6SUJlvUQtI4moOO1wKfyDkv7bo989jzgDsCL+y6IRoqezK1oXGFnpLigyiltBm4GFhKDYu9x6DLqMPzL08p3biLXf1bc/9/mI12SlNlmOreA5n4LM1MG2uYXKdyzremdp69yLKn0ox6M3AhtVKo+iznfC/q8hOPSyndYtiSNJamd2k5U69Mu50BX/Km+RycD1xFLaqxsrncCFyQUrpuEvvYCjwZeHHO+bjZaqs0WQP9oZvzasW52/X5UVcQcWtKuaLPjzumnPMy4NPAh1JKH+66PdJcklIqOednAafnnP8mpfTurts0X+Scb0OdJ/XXKaXfdd0eDZXgltV1J6MwBCfJmzB0HXBdzjnaFGRJKZ3fFKL4Us55II5nNH8N/IdujjsUuKnPj7kRuHOfH3Mi76FWHktdN0Sai5pJ248Akmdx+yPnvDe1EuqbU0qf6bg5GjLTWIh3AZOfYzUQplPZMqX0Y2pV4k8xQ2t0Sm0Yprq1iluupdCvxx0EhwCHA08folXcpaHT9Iw8mloF60Fdt2cuyzmvBE4GTk4pvbHr9mho3UidWzQVwdTmWQ29lNKXqYuVH0kdNij1nWGqW11V3RmEv/vB1LKvf5pS2rCrjSVNT0rpDGqFv0/knO/bdXvmopzzcuBzwK+oB3hSW9dTlyWZrEXA5qbIw7ySUvoAdYTLkTnngS0Pr7lrEA6q57MNdPM3mMy6FbMm5/xPwP7AWSmly7psizSfpJS+CTwd+GzOeeCK0QyzpmLiJ4HLgefY265p2gRsYfK9LcuppcfnqwupAfRLOee9um6M5hfDVLfOo39l0UcspZ417dJFwFn0f76YNO+llL4EPId60PGwrtszFzQHb1+hLvH3tJRSF8O3NYc0c4kupfZO7apY2EpqQYfRS0zON78FfgScknPev+vGaP4wTHWplJuoZ1P6aSv1C7ozKaWPYJCSOpNS+izwWOBDOedndNycoZZzPgT4HnAm8KSmUpk0bc2QvYuoYWoVt1xGZWRtpuupC922LuYwh/w9tYqm1YHVN4ap7v2QdiVQ2/oZpfiFK81zKaXvAsdQq/y9qlnbRlOQcz4a+D7wnpTSi+2R0kxLKW2irst0GTVUjazLtIo6ZP/ClJJBqpFSKimlfwX+vOu2aP4wTHXv/fSva34d4DozkgBIKf0SuC9wLPDenPNUJrzPaznnh1OH9r0wpfTmjpujOSyltD2ldCM1VP2eOkXg3JTS5U3Y0ijNkhBSX7hob/e+SS1lulsfHmsh8Ik+PI6kIZFSWtuUS/8Y8M2c81NSShd03a5BlXNeCLwCeD5wXErp1I6bpHmi6X2y91MaMPZMda2U7dTeqY2z/EibgA9TSqeV/CQNnpTSOuBPgc8Dp+ecn9hxkwZSMz/qFOrwyLsbpCRJhqmuRSwETgKuneVHugn4p1l+DElDqhlK9B/AI4Cccz4p59yPHvOh0ATM06nrSD0spXRJx02SJA0Aw1T3FlPXkvg7Zq93agPw/4AbZmn/kuaIlNJPgKOpJ2DOyjnfr+MmdSrnvFfO+SQgA49IKb3eNaQkSSOcM9W9RdRqft8H3gc8E1gxg/vfCHyNejZ1IbU0uiSNK6W0HnhOzvnPgU/knL8JvDyldHHHTeubnPMi4K+BRF2M9+jmdZEk6Wb2TA2W1wBfoPYkzYRNwI+pvV4Alj6WNGkppU8BdwQuAM7OOaec80ye7BlIzWLGZwGPA/44pfQ8g5QkaSz2TA2eFwNXAM+mLsjX1kbgZOCl1GGES6ffNEnzTVOc4p9zzu8B/gP4Vc755cDH5tq6Sjnnw4HXA3cCXgJ81vV7JEkTMUx1bxs79xgVag/VN4D3UgPVVM4Eb6QO5fs76hooox9LkqasKZf+hJzz/amBI+ec3wK8vwlcQ6lZrPhB1BNZ9wXeADwupbS504ZJkoaCYap7W6gBarQfAfcCHg+8gLoO1WLG7mHaQh3StxV4J/BhYPSCddtxvpSkaUopfQ+4b875vsDfAynn/D7gbSmli7pt3eTlnJcAT6CGqBXAm4AnpZRmapi1JGkeMEx1rZStRGyn9k6NDlUbqWXT/we4B3B34P7A7ajBaitwMfBd4Azgh4wdmBYDmyjF4SqSZkRK6QfAX+Scbwu8kDqn6hvA/wJfGsQ5Rk0v1N2oc6GeDvwS+Gfgy1bokyS1MYxh6jBgVc75lK4bMsoaoO1Ql+uAPRm/NHqhrm9yOnBii/0vAda2aZgkTSSldB7w4pzzCcCTgL8B/jvn/HXg/4AvpJQ6W5Yh57yA2sv/OOCx1OHOn6SWOT+nq3ZJUofm4rF0Z4YxTA2qdcCV07jvPjPYlrE4dEXSrEkpXU892XNiznkf4FjgKcC7c87fp/ac/wg4LaV09Wy1I+e8GDgSuHdzeSh1jb1PAscB51hUQtI81/Z4VWMYxjB1LkBK6ZiO2zFzStlMxDpqsYlNM7z3FcA1lGLxCUl90YSl9wHvyznvCRxDDTYvBe6Rc76cGqx+AlwEXNJcLkspbdnV/pvhensDBzaXg6gV+O4NHAWcB5wGnAq8NqX0yxl8epI01FJKd+u6DWMZwJ6ySRnGMDVXXQUcwthzp9paSC08cd0M7U+SpiSldB3wmeZCznkhcDg1+KwBHsCOQHTrnPNVwGXUE0tbqL1M5Jy/R53/uU+z/SZ2hLBLgN9Q5z/9OKV0Yx+emiRJhqmBUcpNRFwJ7AfM1IHACuBie6UkDYpmbaqfN5ed5JwXUb8DD6BWLl0EvJV6gunl1AI7VwOXDGKBC0nS/GOYGizXU4tF7Mn0J+DtBlxBKR5wSBoKKaWt7OhpAiDnfG1z23e7apckSeMxTA2SUkrTOwWwF7CeOkxvKhYBy6lB6tqZbJ4kSZKkHQxTg6auBXUFERuB/alharyS6b2CGqK2AxdRitX7JEmSpFlkmBpUpdxIxCZgd2rVKqjro2xhR2/VQuqE7IXNbVcDNzhHSpIkSZp9hqlBVsoW4GoirqP2Oi2jFpVY0myxFbgW2AxspJSpDgmUJEmS1JJhahjUnqZ1DOGq0JIkSdJctaDrBkiSJEnSMDJMSZIkSVILDvOTpiNiAXU+22JqYZBNlHJTt42SJElSPximpLYidgP2pX6OtlF7eoOIG4ErKWVrl82TJEnS7DJMSW3UILWaurDyplG3rgAOJOJiy9RLkiTNXc6ZkqYqYhF1QeV17Fjzq9dGavn6PfrZLEmSJPWXYUqauhXNv2WCbTYAezZzqiRJkjQHeaAnTd3uwK6KTBRgITsWWJYkSdIcY5iSpm4hYw/vG0vMZkMkSZLUHcOUNHVbqIFqMiYbuiRJkjRkDFPS1N1AXVdqIguBrex6OKAkSZKGlGFKmroN1HWlJlpaYDlwNaVMVKRCkiRJQ8x1pjR9EUuoPTVBLbywaU6vr1TKdiIuAw6i9kBt7rl1AbXa3w3AjR20TpIkSX1imFJ7EcuBvYGV7FwmvBBxLXADpWzppG2zrZSNRFwE7AOsYsfz3wZcAVxvr5QkSdLcZphSOxF7AbemzglaN/pWYC9gLyIuppRN/W5eX9TndUnTMzdSkGIzpVh0QpIkaR4wTGnqInanBqnxhrEV6ryiRcBBRFxIKXO3EMNcfm6SJEkalwUoNDURi4H9uWVv1Fi2Uoe97TerbZIkSZI6YJjSVK2krp002flAm4HlRCydvSZJkiRJ/WeY0uRFjMyFmuocqG3UIg2SJEnSnGGY0lQsai5TLbBwE4YpSZIkzTGGKU1F2/fL9mncV5IkSRpIHuBqKtqumzSymK8kSZI0ZximNBVbaReKlgAbZ7gtkiRJUqcMU5q8uhjt9cCyKd5zEXDDzDdIkiRJ6o5hSlN1I7B4CtsvBLYw9QqAkiRJ0kAzTGlqStkEXEtdb2pXotnuCkpxzpQkSZLmFMOU2rgKWE8NSjHONouo5dAvo5T1/WqYJEmS1C+Lum6AhlAp24lYC+wB7M2OoXyFGtAXAZuBiw1SkiRJmqsMU2qnFqO4lojrqT1Uy6lBaiu112qTQ/skSZI0lxmmND01VN3YXCRJkqR5wzlTkiRJktSCPVPSaBELqGtp1WGLtYKhJEmStBPDlNQrYiWwH/WzUQtqRKwH1lLK1k7bJkmSpIHiMD9pRMQy4EBqZcJ11EIaNwJLgAObHitJkiQJMExJvfaiBqlto67fBCylViyUJEmSAMOUVNVep1XU9bHGsgXYrX8NkiRJ0qAzTElV7OL27fh5kSRJUg8PDqVqO3XB4fE+E4upw/0kSZIkwDAlVaUU4FrGnhcV1M/Kur62SZIkSQPNMCXtcAOwkTp3amFz3ZLm9yso5aauGiZJkqTB4zpT0ohSthNxKTU87UNduHcDNUht6LRtkiRJGjiGKalXKdupPVQ3dN0USZIkDTaH+UmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKmFYSxAcRiwKud8StcN0bSswXWbJEnS9HlsODesYQiPDYcxTGluWAdc2XUjJEnS0PN4Qp0ZxjB1LkBK6ZiO2yFJkqSOpZTu1nUbNH3D2rPonClJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqYUopXTdhinJOV8MrALO6rgpkqTZt6b596wO2yBJmn1rgHUppYO6bshULOq6AS1c2XUDJEl9s67rBkiS+mIdQ3icP3Q9U5IkSZI0CJwzJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrBMCVJkiRJLRimJEmSJKkFw5QkSZIktWCYkiRJkqQWDFOSJEmS1IJhSpIkSZJaMExJkiRJUguGKUmSJElqwTAlSZIkSS0YpiRJkiSpBcOUJEmSJLVgmJIkSZKkFgxTkiRJktSCYUqSJEmSWjBMSZIkSVILhilJkiRJasEwJUmSJEktGKYkSZIkqQXDlCRJkiS1YJiSJEmSpBYMU5IkSZLUgmFKkiRJklowTEmSJElSC4YpSZIkSWrh/wO8x2uo298GXwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 1080x792 with 1 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from FCPython import createPitch\n",
|
|
"\n",
|
|
"pitch_width = 120\n",
|
|
"pitch_height = 80\n",
|
|
"\n",
|
|
"fig, ax = createPitch(pitch_width, pitch_height, 'yards', 'gray')\n",
|
|
"\n",
|
|
"home_team = 'Tottenham Hotspur'\n",
|
|
"away_team = 'Arsenal'\n",
|
|
"\n",
|
|
"for i, shot in shots.iterrows():\n",
|
|
" x = shot['location'][0]\n",
|
|
" y = shot['location'][1]\n",
|
|
" \n",
|
|
" goal = shot['shot_outcome_name']=='Goal'\n",
|
|
" team_name = shot['team_name']\n",
|
|
" \n",
|
|
" circle_size = np.sqrt(shot['shot_statsbomb_xg'] * 30)\n",
|
|
" \n",
|
|
" if team_name == home_team:\n",
|
|
" if goal:\n",
|
|
" shot_circle = plt.Circle((x, pitch_height-y), circle_size, color='grey')\n",
|
|
" plt.text((x+1), pitch_height-y+1, shot['player_name'])\n",
|
|
" else:\n",
|
|
" shot_circle = plt.Circle((x, pitch_height-y), circle_size, color='grey')\n",
|
|
" shot_circle.set_alpha(.1)\n",
|
|
" elif team_name == away_team:\n",
|
|
" if goal:\n",
|
|
" shot_circle = plt.Circle((pitch_width-x, y), circle_size, color='red')\n",
|
|
" plt.text((pitch_width-x+1), y+1, shot['player_name'])\n",
|
|
" else:\n",
|
|
" shot_circle = plt.Circle((pitch_width-x, y), circle_size, color='red')\n",
|
|
" shot_circle.set_alpha(.1)\n",
|
|
" \n",
|
|
" ax.add_patch(shot_circle)\n",
|
|
" \n",
|
|
"plt.text(5, 75, away_team)\n",
|
|
"plt.text(100, 75, home_team)\n",
|
|
"\n",
|
|
"plt.title('Arsenal vs Tottenham Hotspur shots with expected goals size')\n",
|
|
"\n",
|
|
"fig.set_size_inches(15, 11)\n",
|
|
"\n",
|
|
"plt.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "6b1fa9b1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "58c9a382",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "809fbf54",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "9697dddd",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "87f42eef",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "fc1e491b",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "af4a2687",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "c63f8f82",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "bf5ec0a2",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "80ddb8b1",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"id": "77f93ee6",
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.8.8"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 5
|
|
}
|