add eval script
Some checks failed
s440058-evaluation/pipeline/head There was a failure building this commit

This commit is contained in:
piotr6789 2021-05-24 12:52:51 +02:00
parent 2b3bfc70e4
commit d76512c266
2 changed files with 86 additions and 0 deletions

View File

@ -0,0 +1,39 @@
pipeline {
agent {
dockerfile true
}
parameters{
buildSelector(
defaultSelector: lastSuccessful(),
description: 'Which build to use for copying artifacts',
name: 'WHICH_BUILD'
)
}
stages {
stage('checkout') {
steps {
copyArtifacts fingerprintArtifacts: true, projectName: 's440058-create-dataset', selector: buildParameter('WHICH_BUILD')
}
}
stage('Docker'){
steps{
sh 'python3 "./pytorch-example-evaluate.py" > eval-acc-result.txt'
}
}
stage('archiveArtifacts') {
steps{
archiveArtifacts 'eval-acc-result.txt'
}
}
}
post {
success {
mail body: 'SUCCESS TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
failure {
mail body: 'FAILURE TRAINING', subject: 's440058', to: '26ab8f35.uam.onmicrosoft.com@emea.teams.ms'
}
}
}

View File

@ -0,0 +1,47 @@
from sklearn.model_selection import train_test_split
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
import torch.nn.functional as F
from torch.utils.data import DataLoader, TensorDataset, random_split
from sklearn import preprocessing
import sys
class LogisticRegressionModel(torch.nn.Module):
def __init__(self, input_dim, output_dim):
super(LogisticRegressionModel, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
out = self.linear(x)
return self.sigmoid(out)
results = pd.read_csv('diabetes2.csv')
results.dropna()
data_train, data_valid, data_test = np.split(results.sample(frac=1), [int(.6*len(results)), int(.8*len(results))])
columns_to_train = ['Glucose', 'BloodPressure', 'Insulin', 'Age']
x_train = data_train[columns_to_train].astype(np.float32)
y_train = data_train['Outcome'].astype(np.float32)
x_test = data_test[columns_to_train].astype(np.float32)
y_test = data_test['Outcome'].astype(np.float32)
fTrain = torch.from_numpy(x_train.values)
tTrain = torch.from_numpy(y_train.values.reshape(460,1))
fTest= torch.from_numpy(x_test.values)
tTest = torch.from_numpy(y_test.values)
input_dim = 4
output_dim = 1
model = LogisticRegressionModel(input_dim, output_dim)
pred = model(xTest)
accuracy = accuracy_score(fTest, np.argmax(pred.detach(), axis = 1))
print(f'Accuracy: {accuracy}')