paranormal-or-skeptic-ISI-p.../bert.py
2021-06-21 13:00:35 +02:00

72 lines
2.4 KiB
Python

from transformers import AutoTokenizer, AutoModelForSequenceClassification, TrainingArguments, Trainer
import random
import torch
PATHS = ['train/in.tsv', 'train/expected.tsv', 'dev-0/in.tsv', 'test-A/in.tsv', './dev-0/out.tsv', './test-A/out.tsv']
PRE_TRAINED = 'roberta-base'
def get_data(path):
data = []
with open(path, encoding='utf-8') as f:
data = f.readlines()
return data
class IMDbDataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.labels)
def prepare(data_train_X, data_train_Y):
tokenizer = AutoTokenizer.from_pretrained(PRE_TRAINED)
model = AutoModelForSequenceClassification.from_pretrained(PRE_TRAINED, num_labels=2)
encoded_input = tokenizer([text[0] for text in list(zip(data_train_X, data_train_Y))], truncation=True, padding=True)
train_dataset = IMDbDataset(encoded_input , [int(text[1]) for text in list(zip(data_train_X, data_train_Y))])
return train_dataset, model
def trainer(train_dataset, model):
training_args = TrainingArguments(
output_dir='./results', # output directory
num_train_epochs=3, # total number of training epochs
per_device_train_batch_size=16, # batch size per device during training
per_device_eval_batch_size=64, # batch size for evaluation
warmup_steps=500, # number of warmup steps for learning rate scheduler
weight_decay=0.01, # strength of weight decay
logging_dir='./logs', # directory for storing logs
logging_steps=10,
)
trainer = Trainer(
model=model, # the instantiated Transformers model to be trained
args=training_args, # training arguments, defined above
train_dataset=train_dataset, # training dataset
)
trainer.train()
def main():
#data
X_train = get_data(PATHS[0])
y_train = get_data(PATHS[1])
X_dev = get_data(PATHS[2])
X_test = get_data(PATHS[3])
#prepare
train_dataset, model = prepare(X_train, y_train)
#trainer
trainer(train_dataset, model)
if __name__ == '__main__':
main()