Why u do da bestfs with bugz
This commit is contained in:
parent
e39b82b4a8
commit
5790a923f0
@ -59,6 +59,7 @@ class GC(Cell):
|
||||
result = []
|
||||
|
||||
houses_list = []
|
||||
dump_list = []
|
||||
a = 0
|
||||
for row in enviromnent:
|
||||
b = 0
|
||||
@ -66,13 +67,18 @@ class GC(Cell):
|
||||
print(col)
|
||||
if (type(col) is House):
|
||||
houses_list.append([col,[a,b]])
|
||||
if (type(col) is Dump):
|
||||
dump_list.append([col,[a,b]])
|
||||
b += 1
|
||||
a += 1
|
||||
|
||||
for home in range(house_count):
|
||||
avalible_moves = check_moves(enviromnent, x,y)
|
||||
[x,y],result = BestFS(enviromnent,avalible_moves,[[x,y]],houses_list)
|
||||
self.moves.extend(result)
|
||||
available_movement = check_moves(enviromnent, x, y)
|
||||
result, [x, y] = BestFS(enviromnent, [x, y], houses_list)
|
||||
self.moves.extend(result)
|
||||
available_movement = check_moves(enviromnent, x, y)
|
||||
result, [x, y] = BestFS(enviromnent, [x, y], dump_list)
|
||||
print("IM ALIVEEEEEEEEEEEEEEEE")
|
||||
self.moves.extend(result[1:])
|
||||
self.moves.reverse()
|
||||
|
||||
|
||||
|
@ -1,72 +1,126 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, goal):
|
||||
result = sqrt(pow(goal[0]-gc[0],2)+pow(goal[1]-gc[1],2))
|
||||
return result
|
||||
|
||||
def BestFS(grid, available_movement, gc_moveset, houses_list, depth=0):
|
||||
|
||||
possible_goals = []
|
||||
a = gc_moveset[-1][0]
|
||||
b = gc_moveset[-1][1]
|
||||
possible_goals.append([a+1,b])
|
||||
possible_goals.append([a-1,b])
|
||||
possible_goals.append([a,b+1])
|
||||
possible_goals.append([a,b-1])
|
||||
house_in_area = False
|
||||
for location in possible_goals:
|
||||
if location[0]>=0 and location[1]>=0:
|
||||
try:
|
||||
cell = grid[location[0]][location[1]]
|
||||
if(type(cell) == House and cell.container.is_full and cell.unvisited):
|
||||
cell.unvisited = False
|
||||
house_in_area = True
|
||||
break
|
||||
except:
|
||||
continue
|
||||
if(house_in_area):
|
||||
xy = gc_moveset[-1]
|
||||
gc_moveset.append("pick_garbage")
|
||||
return (xy, gc_moveset)
|
||||
|
||||
if len(available_movement) == 0 or depth>30:
|
||||
return
|
||||
|
||||
x,y = gc_moveset[-1]
|
||||
|
||||
print([x,y])
|
||||
#calculate distance to the nearest object
|
||||
def CalculateDistance(gc, object_list):
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in houses_list:
|
||||
distance = CalculateDistance([a,b],h[1])
|
||||
for h in object_list:
|
||||
distance = sqrt(pow(h[1][0]-gc[0],2)+pow(h[1][1]-gc[1],2))
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
return min_distance_goal
|
||||
|
||||
def BestFS(grid, gc_moveset, object_list):
|
||||
|
||||
if(len(object_list) == 0):
|
||||
return result
|
||||
|
||||
result = [gc_moveset]
|
||||
print(gc_moveset)
|
||||
x, y = gc_moveset[0], gc_moveset[1]
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
decision_stack = []
|
||||
|
||||
constraint = 100
|
||||
while(len(object_list) > 0 and constraint > 0):
|
||||
|
||||
print("================")
|
||||
print("iteracja: "+str(100-constraint))
|
||||
print("GC: "+str([x,y]))
|
||||
print(object_list)
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
result.append("pick_garbage")
|
||||
decision_stack = []
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
object_list.remove([cell,min_distance_goal[0]])
|
||||
if(len(object_list)==0):
|
||||
break
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
preffered_directions.append("pick_garbage")
|
||||
if(min_distance_goal[0][0] >= a):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] <= a):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] >= b):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] <= b):
|
||||
preffered_directions.append("up")
|
||||
print(preffered_directions)
|
||||
print("------------------------------")
|
||||
for direction in available_movement:
|
||||
x_next, y_next = movement(grid,x,y)[0][direction]
|
||||
available_movement_next = check_moves(grid, x_next,y_next,direction)
|
||||
gc_moveset_next = gc_moveset.copy()
|
||||
gc_moveset_next.append([x_next,y_next])
|
||||
result = BestFS(grid, available_movement_next, gc_moveset_next, houses_list, depth+1)
|
||||
if result!= None:
|
||||
return result
|
||||
print(min_distance_goal[0])
|
||||
|
||||
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))
|
||||
|
||||
possible_routes = len([i for i in available_movement if i in preffered_directions ])
|
||||
print("Preferred to available count: "+str(possible_routes))
|
||||
|
||||
#HOTFIX
|
||||
if(possible_routes > 1):
|
||||
if(len(decision_stack) > 0):
|
||||
if(decision_stack[0] == [x,y]):
|
||||
preffered_directions.pop(1)
|
||||
else:
|
||||
decision_stack = [[x,y]]
|
||||
preffered_directions.pop(0)
|
||||
print("Decision stack: "+str(decision_stack))
|
||||
|
||||
""" if(possible_routes > 1):
|
||||
for move in available_movement:
|
||||
if (move in preffered_directions):
|
||||
x_next, y_next = movement(grid, x, y)[0][move]
|
||||
route = BestFS(grid, [x_next,y_next], houses_list, [[x_next, y_next]], check_moves(grid, x_next, y_next, move), "House", depth + 1)
|
||||
print("DIRECTION: "+str(move)+", GIVEN "+str(len(houses_list))+" HOUSES, RECURSION ON DEPTH "+str(depth+1)+" returned "+str(route))
|
||||
if (route == None):
|
||||
break
|
||||
if (route.count("pick_garbage") - 1 == len(houses_list)):
|
||||
print(str(route.count("pick_garbage"))+" / "+str(len(houses_list)))
|
||||
print("ROUTE ADDED")
|
||||
result.extend(route)
|
||||
break
|
||||
break """
|
||||
|
||||
if(len(available_movement) == 0):
|
||||
available_movement = check_moves(grid, x, y)
|
||||
if(len(available_movement)>0):
|
||||
next_move = available_movement[0]
|
||||
for move in available_movement:
|
||||
if (move not in discouraged_directions):
|
||||
next_move = move
|
||||
break
|
||||
for move in preffered_directions:
|
||||
if(move in available_movement):
|
||||
next_move = move
|
||||
break
|
||||
print("Next move: "+str(next_move))
|
||||
x_next, y_next = movement(grid, x, y)[0][next_move]
|
||||
print("Next moving to "+str(x_next)+" "+str(y_next))
|
||||
result.append([x_next,y_next])
|
||||
x, y = x_next, y_next
|
||||
available_movement = check_moves(grid, x, y, next_move)
|
||||
print("------------------------------")
|
||||
|
||||
constraint -= 1
|
||||
|
||||
return result, [x,y]
|
||||
|
84
Traversal/BestFS_backup.py
Normal file
84
Traversal/BestFS_backup.py
Normal file
@ -0,0 +1,84 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, goal):
|
||||
result = sqrt(pow(goal[0]-gc[0],2)+pow(goal[1]-gc[1],2))
|
||||
return result
|
||||
|
||||
def BestFS(grid, available_movement, gc_moveset, houses_list, mode = "House", depth=0):
|
||||
|
||||
possible_goals = []
|
||||
a = gc_moveset[-1][0]
|
||||
b = gc_moveset[-1][1]
|
||||
possible_goals.append([a+1,b])
|
||||
possible_goals.append([a-1,b])
|
||||
possible_goals.append([a,b+1])
|
||||
possible_goals.append([a,b-1])
|
||||
object_in_area = False
|
||||
for location in possible_goals:
|
||||
if GRID_WIDTH>location[0]>=0 and GRID_HEIGHT>location[1]>=0:
|
||||
cell = grid[location[0]][location[1]]
|
||||
if mode == "House":
|
||||
if(type(cell) == House and cell.container.is_full and cell.unvisited):
|
||||
cell.unvisited = False
|
||||
object_in_area = True
|
||||
print("***"+str([cell,location])+"***")
|
||||
houses_list.remove([cell,location])
|
||||
break
|
||||
elif mode == "Dump":
|
||||
if(type(cell) == Dump and cell.unvisited):
|
||||
cell.unvisited = False
|
||||
object_in_area = True
|
||||
break
|
||||
if(object_in_area):
|
||||
xy = gc_moveset[-1]
|
||||
gc_moveset.append("pick_garbage")
|
||||
return (xy, gc_moveset)
|
||||
|
||||
if len(available_movement) == 0 or depth>30:
|
||||
return
|
||||
|
||||
x,y = gc_moveset[-1]
|
||||
|
||||
print([x,y])
|
||||
print(houses_list)
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in houses_list:
|
||||
distance = CalculateDistance([a,b],h[1])
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
if(min_distance_goal[0][0] >= a):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] <= a):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] >= b):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] <= b):
|
||||
preffered_directions.append("up")
|
||||
print(preffered_directions)
|
||||
print(available_movement)
|
||||
print("=")
|
||||
output_list = available_movement.copy()
|
||||
output_list = output_list.sort(key=lambda x: preffered_directions.index(x))
|
||||
print(output_list)
|
||||
print("------------------------------")
|
||||
|
||||
|
||||
for direction in available_movement:
|
||||
x_next, y_next = movement(grid,x,y)[0][direction]
|
||||
available_movement_next = check_moves(grid, x_next,y_next,direction)
|
||||
gc_moveset_next = gc_moveset.copy()
|
||||
gc_moveset_next.append([x_next,y_next])
|
||||
result = BestFS(grid, available_movement_next, gc_moveset_next, houses_list, "House", depth+1)
|
||||
if result!= None:
|
||||
return result
|
96
Traversal/BestFS_iter.py
Normal file
96
Traversal/BestFS_iter.py
Normal file
@ -0,0 +1,96 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, houses_list):
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in houses_list:
|
||||
distance = sqrt(pow(h[1][0]-gc[0],2)+pow(h[1][1]-gc[1],2))
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
return min_distance_goal
|
||||
|
||||
def BestFS(grid, gc_moveset, houses_list, result, available_movement, mode = "House"):
|
||||
|
||||
#result = [gc_moveset]
|
||||
|
||||
if(len(houses_list) == 0 and depth > 100):
|
||||
return result
|
||||
|
||||
print(gc_moveset)
|
||||
x, y = gc_moveset[0], gc_moveset[1]
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
constraint = 100
|
||||
while(len(houses_list) > 0 and constraint > 0):
|
||||
|
||||
print("================")
|
||||
print("iteracja: "+str(100-constraint))
|
||||
print("GC: "+str([x,y]))
|
||||
print(houses_list)
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], houses_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
result.append("pick_garbage")
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
houses_list.remove([cell,min_distance_goal[0]])
|
||||
if(len(houses_list)==0):
|
||||
break
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
min_distance_goal = CalculateDistance([x,y], houses_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
print(min_distance_goal[0])
|
||||
|
||||
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))
|
||||
|
||||
if(len(available_movement) == 0):
|
||||
available_movement = check_moves(grid, x, y)
|
||||
if(len(available_movement)>0):
|
||||
next_move = available_movement[0]
|
||||
for move in available_movement:
|
||||
if (move not in discouraged_directions):
|
||||
next_move = move
|
||||
break
|
||||
for move in preffered_directions:
|
||||
if(move in available_movement):
|
||||
next_move = move
|
||||
break
|
||||
print("Next move: "+str(next_move))
|
||||
x_next, y_next = movement(grid, x, y)[0][next_move]
|
||||
print("Next moving to "+str(x_next)+" "+str(y_next))
|
||||
result.append([x_next,y_next])
|
||||
x, y = x_next, y_next
|
||||
available_movement = check_moves(grid, x, y, next_move)
|
||||
print("------------------------------")
|
||||
|
||||
constraint -= 1
|
||||
|
||||
return result
|
Loading…
Reference in New Issue
Block a user