1
0
forked from tdwojak/Python2018
Python2018/labs06/task02.py
2018-06-06 20:59:01 +02:00

68 lines
1.8 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def wczytaj_dane():
mieszkania = pd.read_csv('mieszkania.csv',
sep=',',
encoding='UTF-8',
usecols=[0,1,2,3,4,5,6])
return mieszkania
def most_common_room_number(dane):
return dane.mode(numeric_only=True)["Rooms"][0]
def cheapest_flats(dane, n):
return dane.sort_values(by=['Expected'], ascending=False).head(n)
def find_borough(desc):
dzielnice = ['Stare Miasto',
'Wilda',
'Jeżyce',
'Rataje',
'Piątkowo',
'Winogrady',
'Miłostowo',
'Dębiec']
for i in dzielnice:
if desc.find(i) + 1:
return (i)
return ('Inne')
def add_borough(dane):
dane['Borough'] = dane['Location'].apply(find_borough)
return (dane)
def write_plot(dane, filename):
bar = dane["Borough"].value_counts().plot(kind="bar", figsize=(6, 6))
fig = bar.get_figure()
fig.savefig(filename)
def mean_price(dane, room_number):
return dane[dane["Rooms"] == room_number]["Expected"].mean()
def find_13(dane):
return dane[dane["Floor"] == 13]["Borough"].unique()
def find_best_flats(dane):
return dane[(dane["Borough"] == "Winogrady") & (dane["Floor"] == 1) & (dane["Rooms"] == 3)]
def main():
dane = wczytaj_dane()
print(dane[:5])
print("Najpopularniejsza liczba pokoi w mieszkaniu to: {}"
.format(most_common_room_number(dane)))
print("{} to najładniejsza dzielnica w Poznaniu."
.format(find_borough("Grunwald i Jeżyce")))
print("Średnia cena mieszkania 3-pokojowego, to: {}"
.format(mean_price(dane, 3)))
if __name__ == "__main__":
main()