This commit is contained in:
parent
adec9b659d
commit
f20be256fe
46
Jenkinsfile_eval
Normal file
46
Jenkinsfile_eval
Normal file
@ -0,0 +1,46 @@
|
||||
pipeline {
|
||||
agent {
|
||||
docker {
|
||||
image 'docker_image'
|
||||
}
|
||||
}
|
||||
parameters {
|
||||
gitParameter branchFilter: 'origin/(.*)', defaultValue: 'master', name: 'BRANCH', type: 'PT_BRANCH'
|
||||
buildSelector(
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'Which build to use for copying artifacts',
|
||||
name: 'BUILD_SELECTOR'
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('Script'){
|
||||
steps {
|
||||
copyArtifacts filter: '*', projectName: 's444018-create-dataset', selector: buildParameter('BUILD_SELECTOR')
|
||||
copyArtifacts filter: '*', projectName: 's444018-training/${BRANCH}', selector: buildParameter('BUILD_SELECTOR')
|
||||
copyArtifacts filter: '*', projectName: 's444018-evaluation/master', selector: buildParameter('BUILD_SELECTOR'), optional: true
|
||||
sh 'python3 ./biblioteka_DL/evaluate.py'
|
||||
archiveArtifacts artifacts: 'mae.txt, rmse.txt, mse.txt, evr.txt, metrics.png', followSymlinks: false
|
||||
script {
|
||||
ACC = sh (
|
||||
script: 'tail -1 metrics.txt',
|
||||
returnStdout: true
|
||||
).trim()
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
post {
|
||||
success {
|
||||
emailext body: "SUCCESS, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
failure {
|
||||
emailext body: "FAILURE, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
unstable {
|
||||
emailext body: "UNSTABLE, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
changed {
|
||||
emailext body: "CHANGED, ACC = ${ACC}", subject: 's444018-evaluation', to: 'e19191c5.uam.onmicrosoft.com@emea.teams.ms'
|
||||
}
|
||||
}
|
||||
}
|
164
biblioteka_DL/evaluate.py
Normal file
164
biblioteka_DL/evaluate.py
Normal file
@ -0,0 +1,164 @@
|
||||
import sys
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, explained_variance_score, \
|
||||
mean_squared_error, mean_absolute_error
|
||||
|
||||
|
||||
def drop_relevant_columns(imbd_data):
|
||||
imbd_data.drop(columns=["Poster_Link"], inplace=True)
|
||||
imbd_data.drop(columns=["Overview"], inplace=True)
|
||||
imbd_data.drop(columns=["Certificate"], inplace=True)
|
||||
return imbd_data
|
||||
|
||||
|
||||
def lowercase_columns_names(imbd_data):
|
||||
imbd_data["Series_Title"] = imbd_data["Series_Title"].str.lower()
|
||||
imbd_data["Genre"] = imbd_data["Genre"].str.lower()
|
||||
imbd_data["Director"] = imbd_data["Director"].str.lower()
|
||||
imbd_data["Star1"] = imbd_data["Star1"].str.lower()
|
||||
imbd_data["Star2"] = imbd_data["Star2"].str.lower()
|
||||
imbd_data["Star3"] = imbd_data["Star3"].str.lower()
|
||||
imbd_data["Star4"] = imbd_data["Star4"].str.lower()
|
||||
return imbd_data
|
||||
|
||||
|
||||
def data_to_numeric(imbd_data):
|
||||
imbd_data = imbd_data.replace(np.nan, '', regex=True)
|
||||
imbd_data["Gross"] = imbd_data["Gross"].str.replace(',', '')
|
||||
imbd_data["Gross"] = pd.to_numeric(imbd_data["Gross"], errors='coerce')
|
||||
imbd_data["Runtime"] = imbd_data["Runtime"].str.replace(' min', '')
|
||||
imbd_data["Runtime"] = pd.to_numeric(imbd_data["Runtime"], errors='coerce')
|
||||
imbd_data["IMDB_Rating"] = pd.to_numeric(imbd_data["IMDB_Rating"], errors='coerce')
|
||||
imbd_data["Meta_score"] = pd.to_numeric(imbd_data["Meta_score"], errors='coerce')
|
||||
imbd_data["Released_Year"] = pd.to_numeric(imbd_data["Released_Year"], errors='coerce')
|
||||
imbd_data = imbd_data.dropna()
|
||||
imbd_data = imbd_data.reset_index()
|
||||
imbd_data.drop(columns=["index"], inplace=True)
|
||||
return imbd_data
|
||||
|
||||
|
||||
def create_train_dev_test(imbd_data):
|
||||
data_train, data_test = train_test_split(imbd_data, test_size=230, random_state=1, shuffle=True)
|
||||
data_test, data_dev = train_test_split(data_test, test_size=115, random_state=1, shuffle=True)
|
||||
data_test.to_csv("data_test.csv", encoding="utf-8", index=False)
|
||||
data_dev.to_csv("data_dev.csv", encoding="utf-8", index=False)
|
||||
data_train.to_csv("data_train.csv", encoding="utf-8", index=False)
|
||||
|
||||
|
||||
def normalize_gross(imbd_data):
|
||||
imbd_data[["Gross"]] = imbd_data[["Gross"]] / 10000000
|
||||
return imbd_data
|
||||
|
||||
|
||||
def prepare_dataset():
|
||||
df = pd.read_csv('biblioteka_DL/imdb_top_1000.csv')
|
||||
df = drop_relevant_columns(df)
|
||||
df_lowercase = lowercase_columns_names(df)
|
||||
df = data_to_numeric(df_lowercase)
|
||||
df = normalize_gross(df)
|
||||
return df
|
||||
|
||||
|
||||
class LinearRegressionModel(torch.nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super(LinearRegressionModel, self).__init__()
|
||||
self.linear = torch.nn.Linear(1, 1) # One in and one out
|
||||
|
||||
def forward(self, x):
|
||||
y_pred = self.linear(x)
|
||||
return y_pred
|
||||
|
||||
|
||||
df = prepare_dataset()
|
||||
data_train, data_test = train_test_split(df, random_state=1, shuffle=True)
|
||||
|
||||
X_train = pd.DataFrame(data_train["Meta_score"], dtype=np.float64)
|
||||
X_train = X_train.to_numpy()
|
||||
|
||||
y_train = pd.DataFrame(data_train["Gross"], dtype=np.float64)
|
||||
y_train = y_train.to_numpy()
|
||||
|
||||
X_train = X_train.reshape(-1, 1)
|
||||
y_train = y_train.reshape(-1, 1)
|
||||
|
||||
X_train = torch.from_numpy(X_train.astype(np.float32)).view(-1, 1)
|
||||
y_train = torch.from_numpy(y_train.astype(np.float32)).view(-1, 1)
|
||||
|
||||
input_size = 1
|
||||
output_size = 1
|
||||
|
||||
model = torch.load("model.pkl")
|
||||
|
||||
X_test = pd.DataFrame(data_test["Meta_score"], dtype=np.float64)
|
||||
X_test = X_test.to_numpy()
|
||||
X_test = X_test.reshape(-1, 1)
|
||||
X_test = torch.from_numpy(X_test.astype(np.float32)).view(-1, 1)
|
||||
|
||||
predicted = model(X_test).detach().numpy()
|
||||
|
||||
gross_test_g = pd.DataFrame(data_test["Gross"], dtype=np.float64)
|
||||
gross_test_g = gross_test_g.to_numpy()
|
||||
gross_test_g = gross_test_g.reshape(-1, 1)
|
||||
|
||||
pred = pd.DataFrame(predicted)
|
||||
|
||||
predicted = []
|
||||
expected = []
|
||||
|
||||
for i in range(0, len(X_test)):
|
||||
predicted.append(np.argmax(model(X_test[i]).detach().numpy(), axis=0))
|
||||
expected.append(gross_test_g[i])
|
||||
|
||||
for i in range(0, len(expected)):
|
||||
expected[i] = expected[i][0]
|
||||
|
||||
rmse = mean_squared_error(gross_test_g, pred, squared=False)
|
||||
mse = mean_squared_error(gross_test_g, pred)
|
||||
evr = explained_variance_score(gross_test_g, pred)
|
||||
mae = mean_absolute_error(gross_test_g, pred)
|
||||
|
||||
res = f"Explained variance regression score: {evr}, RMSE: {rmse}, MSE: {mse}, MAE: {mae}"
|
||||
|
||||
with open('mae.txt', 'a+') as f:
|
||||
f.write(str(mae) + '\n')
|
||||
|
||||
with open('rmse.txt', 'a+') as f:
|
||||
f.write(str(rmse) + '\n')
|
||||
|
||||
with open('mse.txt', 'a+') as f:
|
||||
f.write(str(mse) + '\n')
|
||||
|
||||
with open('evr.txt', 'a+') as f:
|
||||
f.write(str(evr) + '\n')
|
||||
|
||||
with open('mae.txt') as f:
|
||||
mae_val = [float(line) for line in f if line]
|
||||
builds = list(range(1, len(mae_val) + 1))
|
||||
|
||||
with open('rmse.txt') as f:
|
||||
rmse_val = [float(line) for line in f if line]
|
||||
|
||||
with open('mse.txt') as f:
|
||||
mse_val = [float(line) for line in f if line]
|
||||
|
||||
with open('evr.txt') as f:
|
||||
evr_val = [float(line) for line in f if line]
|
||||
|
||||
|
||||
ax = plt.gca()
|
||||
ax.set_title('Build')
|
||||
|
||||
mae_line = ax.plot(mae_val, color='blue', label="MAE")
|
||||
rmse_line = ax.plot(rmse_val, color='green', label="RMSE")
|
||||
mse_line = ax.plot(mse_val, color='red', label="MSE")
|
||||
evr_line = ax.plot(evr_val, color='orange', label="EVR")
|
||||
ax.legend(bbox_to_anchor=(0., 1.01, 1.0, .1), loc=3,
|
||||
ncol=2, mode="expand", borderaxespad=0.)
|
||||
plt.show()
|
||||
plt.savefig('metrics.png')
|
Loading…
Reference in New Issue
Block a user