Projekt_Grafika/dependencies/physx-4.1/source/physxextensions/src/ExtPrismaticJoint.cpp

234 lines
8.7 KiB
C++

//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of NVIDIA CORPORATION nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Copyright (c) 2008-2019 NVIDIA Corporation. All rights reserved.
// Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved.
// Copyright (c) 2001-2004 NovodeX AG. All rights reserved.
#include "ExtPrismaticJoint.h"
#include "ExtConstraintHelper.h"
#include "PxPhysics.h"
using namespace physx;
using namespace Ext;
PxPrismaticJoint* physx::PxPrismaticJointCreate(PxPhysics& physics, PxRigidActor* actor0, const PxTransform& localFrame0, PxRigidActor* actor1, const PxTransform& localFrame1)
{
PX_CHECK_AND_RETURN_NULL(localFrame0.isSane(), "PxPrismaticJointCreate: local frame 0 is not a valid transform");
PX_CHECK_AND_RETURN_NULL(localFrame1.isSane(), "PxPrismaticJointCreate: local frame 1 is not a valid transform");
PX_CHECK_AND_RETURN_NULL((actor0 && actor0->is<PxRigidBody>()) || (actor1 && actor1->is<PxRigidBody>()), "PxPrismaticJointCreate: at least one actor must be dynamic");
PX_CHECK_AND_RETURN_NULL(actor0 != actor1, "PxPrismaticJointCreate: actors must be different");
PrismaticJoint* j;
PX_NEW_SERIALIZED(j, PrismaticJoint)(physics.getTolerancesScale(), actor0, localFrame0, actor1, localFrame1);
if(j->attach(physics, actor0, actor1))
return j;
PX_DELETE(j);
return NULL;
}
void PrismaticJoint::setProjectionAngularTolerance(PxReal tolerance)
{
PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0 && tolerance <= PxPi, "PxPrismaticJoint::setProjectionAngularTolerance: invalid parameter");
data().projectionAngularTolerance = tolerance;
markDirty();
}
PxReal PrismaticJoint::getProjectionAngularTolerance() const
{
return data().projectionAngularTolerance;
}
void PrismaticJoint::setProjectionLinearTolerance(PxReal tolerance)
{
PX_CHECK_AND_RETURN(PxIsFinite(tolerance) && tolerance >=0, "PxPrismaticJoint::setProjectionLinearTolerance: invalid parameter");
data().projectionLinearTolerance = tolerance;
markDirty();
}
PxReal PrismaticJoint::getProjectionLinearTolerance() const
{
return data().projectionLinearTolerance;
}
PxPrismaticJointFlags PrismaticJoint::getPrismaticJointFlags(void) const
{
return data().jointFlags;
}
void PrismaticJoint::setPrismaticJointFlags(PxPrismaticJointFlags flags)
{
data().jointFlags = flags; markDirty();
}
void PrismaticJoint::setPrismaticJointFlag(PxPrismaticJointFlag::Enum flag, bool value)
{
if(value)
data().jointFlags |= flag;
else
data().jointFlags &= ~flag;
markDirty();
}
PxJointLinearLimitPair PrismaticJoint::getLimit() const
{
return data().limit;
}
void PrismaticJoint::setLimit(const PxJointLinearLimitPair& limit)
{
PX_CHECK_AND_RETURN(limit.isValid(), "PxPrismaticJoint::setLimit: invalid parameter");
data().limit = limit;
markDirty();
}
bool PrismaticJoint::attach(PxPhysics &physics, PxRigidActor* actor0, PxRigidActor* actor1)
{
mPxConstraint = physics.createConstraint(actor0, actor1, *this, sShaders, sizeof(PrismaticJointData));
return mPxConstraint!=NULL;
}
void PrismaticJoint::exportExtraData(PxSerializationContext& stream)
{
if(mData)
{
stream.alignData(PX_SERIAL_ALIGN);
stream.writeData(mData, sizeof(PrismaticJointData));
}
stream.writeName(mName);
}
void PrismaticJoint::importExtraData(PxDeserializationContext& context)
{
if(mData)
mData = context.readExtraData<PrismaticJointData, PX_SERIAL_ALIGN>();
context.readName(mName);
}
void PrismaticJoint::resolveReferences(PxDeserializationContext& context)
{
setPxConstraint(resolveConstraintPtr(context, getPxConstraint(), getConnector(), sShaders));
}
PrismaticJoint* PrismaticJoint::createObject(PxU8*& address, PxDeserializationContext& context)
{
PrismaticJoint* obj = new (address) PrismaticJoint(PxBaseFlag::eIS_RELEASABLE);
address += sizeof(PrismaticJoint);
obj->importExtraData(context);
obj->resolveReferences(context);
return obj;
}
// global function to share the joint shaders with API capture
const PxConstraintShaderTable* Ext::GetPrismaticJointShaderTable()
{
return &PrismaticJoint::getConstraintShaderTable();
}
//~PX_SERIALIZATION
static void PrismaticJointProject(const void* constantBlock, PxTransform& bodyAToWorld, PxTransform& bodyBToWorld, bool projectToA)
{
const PrismaticJointData& data = *reinterpret_cast<const PrismaticJointData*>(constantBlock);
PxTransform cA2w, cB2w, cB2cA, projected;
joint::computeDerived(data, bodyAToWorld, bodyBToWorld, cA2w, cB2w, cB2cA);
const PxVec3 v(0.0f, cB2cA.p.y, cB2cA.p.z);
bool linearTrunc, angularTrunc;
projected.p = joint::truncateLinear(v, data.projectionLinearTolerance, linearTrunc);
projected.q = joint::truncateAngular(cB2cA.q, PxSin(data.projectionAngularTolerance/2), PxCos(data.projectionAngularTolerance/2), angularTrunc);
if(linearTrunc || angularTrunc)
{
projected.p.x = cB2cA.p.x;
joint::projectTransforms(bodyAToWorld, bodyBToWorld, cA2w, cB2w, projected, data, projectToA);
}
}
static void PrismaticJointVisualize(PxConstraintVisualizer& viz, const void* constantBlock, const PxTransform& body0Transform, const PxTransform& body1Transform, PxU32 flags)
{
const PrismaticJointData& data = *reinterpret_cast<const PrismaticJointData*>(constantBlock);
PxTransform cA2w, cB2w;
joint::computeJointFrames(cA2w, cB2w, data, body0Transform, body1Transform);
if(flags & PxConstraintVisualizationFlag::eLOCAL_FRAMES)
viz.visualizeJointFrames(cA2w, cB2w);
if((flags & PxConstraintVisualizationFlag::eLIMITS) && (data.jointFlags & PxPrismaticJointFlag::eLIMIT_ENABLED))
{
const PxVec3 bOriginInA = cA2w.transformInv(cB2w.p);
const PxReal ordinate = bOriginInA.x;
const PxReal pad = data.limit.isSoft() ? 0.0f : data.limit.contactDistance;
viz.visualizeLinearLimit(cA2w, cB2w, data.limit.lower, ordinate < data.limit.lower + pad);
viz.visualizeLinearLimit(cA2w, cB2w, data.limit.upper, ordinate > data.limit.upper - pad);
}
}
static PxU32 PrismaticJointSolverPrep(Px1DConstraint* constraints,
PxVec3& body0WorldOffset,
PxU32 /*maxConstraints*/,
PxConstraintInvMassScale& invMassScale,
const void* constantBlock,
const PxTransform& bA2w,
const PxTransform& bB2w,
bool /*useExtendedLimits*/,
PxVec3& cA2wOut, PxVec3& cB2wOut)
{
const PrismaticJointData& data = *reinterpret_cast<const PrismaticJointData*>(constantBlock);
PxTransform cA2w, cB2w;
joint::ConstraintHelper ch(constraints, invMassScale, cA2w, cB2w, body0WorldOffset, data, bA2w, bB2w);
if (cA2w.q.dot(cB2w.q)<0.0f) // minimum dist quat (equiv to flipping cB2bB.q, which we don't use anywhere)
cB2w.q = -cB2w.q;
const bool limitEnabled = data.jointFlags & PxPrismaticJointFlag::eLIMIT_ENABLED;
const PxJointLinearLimitPair& limit = data.limit;
const bool limitIsLocked = limitEnabled && limit.lower >= limit.upper;
const PxVec3 bOriginInA = cA2w.transformInv(cB2w.p);
PxVec3 ra, rb;
ch.prepareLockedAxes(cA2w.q, cB2w.q, bOriginInA, limitIsLocked ? 7ul : 6ul, 7ul, ra, rb);
cA2wOut = ra + bA2w.p;
cB2wOut = rb + bB2w.p;
if(limitEnabled && !limitIsLocked)
{
const PxVec3 axis = cA2w.rotate(PxVec3(1.0f, 0.0f, 0.0f)); // PT: TODO: this has already been computed as part of the quat-to-matrix transform within prepareLockedAxes
const PxReal ordinate = bOriginInA.x;
ch.linearLimit(axis, ordinate, limit.upper, limit);
ch.linearLimit(-axis, -ordinate, -limit.lower, limit);
}
return ch.getCount();
}
PxConstraintShaderTable Ext::PrismaticJoint::sShaders = { PrismaticJointSolverPrep, PrismaticJointProject, PrismaticJointVisualize, PxConstraintFlag::Enum(0) };