Statystyka/testowe/pomocnicze.R

37 lines
1.3 KiB
R
Raw Normal View History

2021-06-20 11:57:11 +02:00
load(url("http://ls.home.amu.edu.pl/data_sets/liver_data.RData"))
head(liver_data)
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
liver_data$condition <- ifelse(liver_data$condition == "Yes", 1, 0)
model_1 <- glm(condition ~ bilirubin + ldh, data = liver_data, family = 'binomial')
model_1
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
summary(model_1)
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
step(model_1)
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
exp(coef(model_1)[2])
exp(coef(model_1)[3])
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
install.packages("ROCR")
library(ROCR)
pred_1 <- prediction(model_1$fitted, liver_data$condition)
plot(performance(pred_1, 'tpr', 'fpr'), main = "Model 1")
performance(pred_1, 'auc')@y.values
2021-06-20 10:42:15 +02:00
2021-06-20 11:57:11 +02:00
liver_data_new <- data.frame(bilirubin = c(0.9, 2.1, 3.4), ldh = c(100, 200, 300))
(predict_glm <- stats::predict(model_1,
liver_data_new,
type = 'response'))
model_1_hat <- coef(model_1)[1] +
coef(model_1)[2] * liver_data$bilirubin +
coef(model_1)[3] * liver_data$ldh
model_1_temp <- seq(min(model_1_hat) - 1, max(model_1_hat) + 2.5, length.out = 100)
condition_temp <- exp(model_1_temp) / (1 + exp(model_1_temp))
plot(model_1_temp, condition_temp, type = "l", xlab = "X beta", ylab = "condition",
xlim = c(-6, 9), ylim = c(-0.1, 1.1))
points(model_1_hat, liver_data$condition, pch = 16)
points(coef(model_1)[1] +
coef(model_1)[2] * liver_data_new$bilirubin +
coef(model_1)[3] * liver_data_new$ldh,
predict_glm, pch = 16, col = "red")