SZI-Smieciarka/uczenie_kacper.py
2020-05-07 16:55:31 +02:00

101 lines
2.8 KiB
Python

import numpy as np
from keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense, BatchNormalization
from keras import backend as K
img_width, img_height = 299, 299
train_data_dir = 'resources/zbior_uczacy'
validation_data_dir = 'resources/smieci'
nb_train_samples = 1599
nb_validation_samples = 1574
epochs = 1
batch_size = 16
def stworzModel():
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (2, 2), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (2, 2)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(4))
model.add(Activation('softmax'))
return model
def trainModel():
model = stworzModel()
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size,
shuffle=True)
model.save_weights('nowy_wytrenowany.h5')
def przewidz(path):
model = stworzModel()
model.load_weights('wytrenowany.h5')
img = load_img(path, target_size=(299, 299))
img_array = img_to_array(img)
img_array = np.expand_dims(img_array, axis=0)
prediction = model.predict(img_array)
np.argmax(prediction[0])
kategoria = np.argmax(prediction[0])
if kategoria == 0:
return "glass"
elif kategoria == 1:
return "metal"
elif kategoria == 2:
return "paper"
elif kategoria == 3:
return "plastic"