8.9 KiB
8.9 KiB
IMPORTS
import regex as re
import sys
from torchtext.vocab import build_vocab_from_iterator
import lzma
from torch.utils.data import IterableDataset
import itertools
from torch import nn
import torch
import pickle
from torch.utils.data import DataLoader
print(torch.backends.mps.is_available())
print(torch.backends.mps.is_built())
FUNCTIONS
def get_words_from_line(line):
line = line.rstrip()
yield '<s>'
for t in line.split(' '):
yield t
yield '</s>'
def get_word_lines_from_file(file_name):
n = 0
with lzma.open(file_name, 'r') as fh:
for line in fh:
n += 1
if n % 1000 == 0:
print(n ,file=sys.stderr)
yield get_words_from_line(line.decode('utf-8'))
def look_ahead_iterator(gen):
prev = None
for item in gen:
if prev is not None:
yield (prev, item)
prev = item
def clean(text):
text = str(text).lower().replace('-\\\\n', '').replace('\\\\n', ' ').replace('-', '').replace('\'s', ' is').replace('\'re', ' are').replace('\'m', ' am').replace('\'ve', ' have').replace('\'ll', ' will')
text = re.sub(r'\p{P}', '', text)
return text
def predict(word, model, vocab):
try:
ixs = torch.tensor(vocab.forward([word])).to(device)
except:
ixs = torch.tensor(vocab.forward(['<unk>'])).to(device)
word = '<unk>'
out = model(ixs)
top = torch.topk(out[0], 300)
top_indices = top.indices.tolist()
top_probs = top.values.tolist()
top_words = vocab.lookup_tokens(top_indices)
prob_list = list(zip(top_words, top_probs))
for index, element in enumerate(prob_list):
unk = None
if '<unk>' in element:
unk = prob_list.pop(index)
prob_list.append(('', unk[1]))
break
if unk is None:
prob_list[-1] = ('', prob_list[-1][1])
return ' '.join([f'{x[0]}:{x[1]}' for x in prob_list])
def predicition_for_file(model, vocab, folder, file):
print('=' * 10, f' do prediction for {folder}/{file} ', '=' * 10)
with lzma.open(f'{folder}/in.tsv.xz', mode='rt', encoding='utf-8') as f:
with open(f'{folder}/out.tsv', 'w', encoding='utf-8') as fid:
for line in f:
separated = line.split('\t')
before = clean(separated[6]).split()[-1]
new_line = predict(before, model, vocab)
fid.write(new_line + '\n')
CLASSES
class Bigrams(IterableDataset):
def __init__(self, text_file, vocabulary_size):
self.vocab = build_vocab_from_iterator(
get_word_lines_from_file(text_file),
max_tokens = vocabulary_size,
specials = ['<unk>'])
self.vocab.set_default_index(self.vocab['<unk>'])
self.vocabulary_size = vocabulary_size
self.text_file = text_file
def __iter__(self):
return look_ahead_iterator(
(self.vocab[t] for t in itertools.chain.from_iterable(get_word_lines_from_file(self.text_file))))
class SimpleBigramNeuralLanguageModel(nn.Module):
def __init__(self, vocabulary_size, embedding_size):
super(SimpleBigramNeuralLanguageModel, self).__init__()
self.model = nn.Sequential(
nn.Embedding(vocabulary_size, embedding_size),
nn.Linear(embedding_size, vocabulary_size),
nn.Softmax()
)
def forward(self, x):
return self.model(x)
PARAMETERS
vocab_size = 30000
embed_size = 1000
batch_size = 5000
device = 'mps'
path_to_training_file = './train/in.tsv.xz'
path_to_model_file = 'model_neural_network.bin'
folder_dev_0, file_dev_0 = 'dev-0', 'in.tsv.xz'
folder_test_a, file_test_a = 'test-A', 'in.tsv.xz'
path_to_vocabulary_file = 'vocabulary_neural_network.pickle'
VOCAB
vocab = build_vocab_from_iterator(
get_word_lines_from_file(path_to_training_file),
max_tokens = vocab_size,
specials = ['<unk>'])
with open(path_to_vocabulary_file, 'wb') as handle:
pickle.dump(vocab, handle, protocol=pickle.HIGHEST_PROTOCOL)
TRAIN MODEL
train_dataset = Bigrams(path_to_training_file, vocab_size)
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
data = DataLoader(train_dataset, batch_size=batch_size)
optimizer = torch.optim.Adam(model.parameters())
criterion = torch.nn.NLLLoss()
model.train()
step = 0
for x, y in data:
x = x.to(device)
y = y.to(device)
optimizer.zero_grad()
ypredicted = model(x)
loss = criterion(torch.log(ypredicted), y)
if step % 100 == 0:
print(step, loss)
step += 1
loss.backward()
optimizer.step()
torch.save(model.state_dict(), path_to_model_file)
LOAD MODEL AND VOCAB
with open(path_to_vocabulary_file, 'rb') as handle:
vocab = pickle.load(handle)
model = SimpleBigramNeuralLanguageModel(vocab_size, embed_size).to(device)
model.load_state_dict(torch.load(path_to_model_file))
model.eval()
CREATE OUTPUTS FILES
DEV-0
predicition_for_file(model, vocab, folder_dev_0, file_dev_0)
TEST-A
predicition_for_file(model, vocab, folder_test_a, file_test_a)