1166 lines
401 KiB
Plaintext
1166 lines
401 KiB
Plaintext
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "TQqrOdkY6nsy"
|
||
},
|
||
"source": [
|
||
"# **Klasyfikacja za pomocą naiwnej metody bayesowskiej z rozkładem normalnym**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "AlcfRFCPSXIj"
|
||
},
|
||
"source": [
|
||
"# **Twierdzenie Bayesa**\n",
|
||
"![bayes.svg]()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "rcpTnWjOh5dq"
|
||
},
|
||
"source": [
|
||
"P(A) -- oznacza prawdopodobieństwo a-priori wystąpienia klasy A (tj. prawdopodobieństwo, że dowolny przykład należy do klasy A)\n",
|
||
"\n",
|
||
"P(B|A) -- oznacza prawdopodobieństwo a-posteriori, że B należy do \n",
|
||
"klasy A\n",
|
||
"\n",
|
||
"P(B) -- znacza prawdopodobieństwo a-priori wystąpienia przykładu B "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"**Naiwny klasyfikator bayesowski jest _naiwny, ponieważ zakłada, że poszczególne cechy są niezależne od siebie**"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "SSaJsYOhz8h8"
|
||
},
|
||
"source": [
|
||
"![rozklady.jpg]()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 104,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>sepal.length</th>\n",
|
||
" <th>sepal.width</th>\n",
|
||
" <th>petal.length</th>\n",
|
||
" <th>petal.width</th>\n",
|
||
" <th>variety</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>0</th>\n",
|
||
" <td>5.1</td>\n",
|
||
" <td>3.5</td>\n",
|
||
" <td>1.4</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>Setosa</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1</th>\n",
|
||
" <td>4.9</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>1.4</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>Setosa</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2</th>\n",
|
||
" <td>4.7</td>\n",
|
||
" <td>3.2</td>\n",
|
||
" <td>1.3</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>Setosa</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3</th>\n",
|
||
" <td>4.6</td>\n",
|
||
" <td>3.1</td>\n",
|
||
" <td>1.5</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>Setosa</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>4</th>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>3.6</td>\n",
|
||
" <td>1.4</td>\n",
|
||
" <td>0.2</td>\n",
|
||
" <td>Setosa</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>145</th>\n",
|
||
" <td>6.7</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>5.2</td>\n",
|
||
" <td>2.3</td>\n",
|
||
" <td>Virginica</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>146</th>\n",
|
||
" <td>6.3</td>\n",
|
||
" <td>2.5</td>\n",
|
||
" <td>5.0</td>\n",
|
||
" <td>1.9</td>\n",
|
||
" <td>Virginica</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>147</th>\n",
|
||
" <td>6.5</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>5.2</td>\n",
|
||
" <td>2.0</td>\n",
|
||
" <td>Virginica</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>148</th>\n",
|
||
" <td>6.2</td>\n",
|
||
" <td>3.4</td>\n",
|
||
" <td>5.4</td>\n",
|
||
" <td>2.3</td>\n",
|
||
" <td>Virginica</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>149</th>\n",
|
||
" <td>5.9</td>\n",
|
||
" <td>3.0</td>\n",
|
||
" <td>5.1</td>\n",
|
||
" <td>1.8</td>\n",
|
||
" <td>Virginica</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>150 rows × 5 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" sepal.length sepal.width petal.length petal.width variety\n",
|
||
"0 5.1 3.5 1.4 0.2 Setosa\n",
|
||
"1 4.9 3.0 1.4 0.2 Setosa\n",
|
||
"2 4.7 3.2 1.3 0.2 Setosa\n",
|
||
"3 4.6 3.1 1.5 0.2 Setosa\n",
|
||
"4 5.0 3.6 1.4 0.2 Setosa\n",
|
||
".. ... ... ... ... ...\n",
|
||
"145 6.7 3.0 5.2 2.3 Virginica\n",
|
||
"146 6.3 2.5 5.0 1.9 Virginica\n",
|
||
"147 6.5 3.0 5.2 2.0 Virginica\n",
|
||
"148 6.2 3.4 5.4 2.3 Virginica\n",
|
||
"149 5.9 3.0 5.1 1.8 Virginica\n",
|
||
"\n",
|
||
"[150 rows x 5 columns]"
|
||
]
|
||
},
|
||
"execution_count": 104,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"import pandas as pd\n",
|
||
"iris_data = pd.read_csv(\"iris.csv\")\n",
|
||
"iris_data"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 106,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<matplotlib.collections.PathCollection at 0x7efc44f734f0>"
|
||
]
|
||
},
|
||
"execution_count": 106,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAgcElEQVR4nO2db4xcV3mHn3fjgE1CCnboxE3Y2g7IEW3Kn3pTEFWbNqXapizJqiiCSGlSUVkqqhqEqhLxwUh1K6VfKGmhUAtQTUWT0CxbbATboi1/hNSi2BQCTnCbeEFJ6mwgBEjIULLs6Yd7NzG7M957zsw5885730eyPDN3duecndnX18957+9ICAHHcRxn/JgY9QAcx3GcNLyAO47jjClewB3HccYUL+CO4zhjihdwx3GcMWVLyRe78MILw65du0q+pOM4zthz/Pjx74QQXrT+8aIFfNeuXRw7dqzkSzqO44w9IvKtXo+7QnEcxxlTGp2Bi8g3gSeAnwArIYR9IrIduBPYBXwTuC6E8HieYTqO4zjriTkD/40QwitCCPvq+7cAiyGElwKL9X3HcRynEIMolGuAw/Xtw8C1A4/GcRzHaUzTRcwA/JuIBODvQwiHgE4I4XR9/BGg0+sLRWQ/sB9gcnJywOE246mnYH4elpZgzx6YnYVt24q8tDNurDwFD87DD5fg/D1wySxsac+H5amnn2L+vnmWvrfEnhfuYfayWbad2575jztNC/ivhhAeFpGfBT4jIt8482AIIdTFfQN1sT8EsG/fvuzJWXffDTMzsLz87GOdDhw9ClNTuV/dGSseuxs+PwM/OuPDsrUDv34Udtj/sNz98N3M3D7D8g+fnX/nvA5H33yUqYvtz98CjRRKCOHh+u9HgXngCmBZRHYC1H8/mmuQTel2NxZvqO7PzFTHHQeAle7G4g3V/c/PVMcN0326u6F4Ayz/cJmZ22foPm17/lbYtICLyHki8vy128BvA18HjgA31k+7EfhErkE2ZX5+Y/FeY3m5Ou44ADw0v7F4r/Gj5eq4Yea/Mb+heK+x/MNl5r9he/5WaKJQOsC8iKw9/59CCAsicjfwMRF5C/At4Lp8w2zGqVODHXeUkdNPP7nJh2Gz42POqcfPPr/NjlvAgv/ftICHEE4BL+/x+GPAVTkGlcqePYMddxSR20+fv8mHYbPjY86eF559fpsdH3es+H9TV2JOT8NEnxlNTFTHnTGghJ++ZLb6B6EXWzvVccPMXjZL57ze8++c12H2Mrvzt+T/TRXwhQVYXe19bHW1Ou6MASX89JZt1dn8+iK+dpZvvJVw27nbOPrmoxuK+NpZ6LiphBgs+f+iYVa5cQduhFJ+escUXH0C7jkAT5yEC/bC5Qdh6/bhfH/lTF08xdLNS8x/Y55Tj5/K5oG1uWZL/t9UAXcHboRSfnq9Z19ehAfnWtMHDtWZ+PWXX5/t+2t0zZb8vymF4g7cCCX8dMv7wEug1TVb8v+mCrg7cCOU8NMt7wMvgVbXbMn/m1Io7sANsWMK3rBUFdInT3kfuBJifLZm11zK/+fGVAF3B26MLdtgVyY/2/I+8BRifbZ215zb/5fAlEJxB+405qJp+n/8J+rjzhopPtuSa9aKqQLuDtxpzCMLQJ8PC6v1cWeNFJ9tyTVrxZRCSXXgnh9uiKb5Ke7Ao0j12Zpds7b+9BRMFfAUB+754YaIyU9xBx7FID5bo2vW2J+egoSQfY+FZ9i3b184duxYtu/f7cLu3b0jZTud6gz7zDPr2Oc7ilnpwpHdvVsDt3aqjpYzz8Rjn99yuk932X3b7p4apXNeh6Wbl8bm7HUc5yIix8/Yj/gZTDnwbduqM+fOunWTtTPq9cXY88MNEdvX3fIslFgs+Wyt/ekpmFIoUGmPpaWq+J46dXanPUjfuHtzZaQ47ZZnocSi2WfHULI/PbdnN1fAoSqk1zdQbql94+7NFZLitD0LJRqNPjuWUv3pJTy7KQceS4oDd2+uFHfgTkNKOPBhv0YrHHgssc4c3JurJdZpexZKaynh80t5dpMKJYYYZw5l81ZMefac+1uuEZOf4n3grWbq4ilOvPUEBz57gJOPnWTvhXs5eOVBtj9vOOsfpTx76ws4NHfmUC5vxZRnz72/5Zk0zU/xPvBWs95PLy4tMnfv3ND8dCnP3moHnkIJB27Ks2t1zVrH5WTHHXiLSfHmsZjy7Fpds/eBt5YSfrpU37xJhZLbHcd681hM5ZqXds0xrj135rhBLOSHlPLTJfrmzRXwUu44xpvHYirXvKRrTnHtOTPHjWElP6RkTnnuvnlTDtyKO7YyD6Cca3annZVxzA/pxzjOpRUO3Io7LuHZi1HKNWt17UawlB9iKdfFlEKx5I5ze/ailHDN3tedFc37W6ZgJdfFVAFPdcdaL5jJ6dmLk9s1l3TtJS5KUob2/S1TCARKKuQcmCrgs7OVZujnjmd7bMFn6oKZNnPJbKVl+jnwS4a0/2LJi5IUsba/ZT9vPG77W1pZkDXlwGPdcbe7sXhDdX9mpjrujAklXPtKd2Pxhur+52eq40ax5I1TNmjWiqkzcIhzx00WPc0ojDaQ27U3WSg13JJoxRs3WZAdl8jcxgVcRM4BjgEPhxBeLyK7gTuAHcBx4IYQwo/zDDOOpu7Y0qKns0aAXF7TF0pN5IEPsiCr7UKmmDPwm4H7gAvq+38F/HUI4Q4R+QDwFuD9Qx5fVkxdMOPk99MegGWC1AVZjd68kQMXkUuA3wU+WN8X4DeBu+qnHAauzTC+rExPw0Sfn8DERHXcGRNK+Om1hdJeDHOh1MnK2oJsL/otyGr15k0XMd8D/BmwWt/fAXwvhLBS338IuHi4Q8vPwgKsrvY+trpaHXfGhBIX8ngAlglSFmS1Xsi0qUIRkdcDj4YQjovIlbEvICL7gf0Ak5OTsV+eRNO+bnfghkj107E93R6AVYTcrjl2QVbrhUxNHPhrgTeIyNXAVioHfhvwAhHZUp+FXwI83OuLQwiHgENQZaEMZdRnIaav2x24IYaxqTE0c+YegJWVUq45ZkFW64VMUWFW9Rn4n9ZdKP8MzJ2xiHlPCOHvzvb12sKsTIVGtR3f1NgEWoOmRj2uHGFW7wDeLiL3UznxDw3wvYZCbJiVqdCotuObGptAq2vWeiFT1IU8IYTPAZ+rb58Crhj+kNJJcdqmQqPajm9qHI22vmatrhl0Xshk6krMVKdtKjSq7fimxo3R2Nes1TWvoe1CJlNZKN7X7TTmomn6f/wn6uN20drXnNKj3WZMFXDv63Ya88gCz17WsJ7V+rhd3DXbQL1Cicnq9r5upzEtd+Dumm2guoDHZnV7X7fTmJY7cHfNNlCrUFKyutc2dOhFvw0dnJbScgc+fek0E33mP8EE05fanr8V1BbwlA2Kva/baUzLHfjCAwus9pn/KqssPGB7/lZQq1BSffbUFJw4AQcOwMmTsHcvHDwI27cPf4zOGFPagSvbR1OzA9eMtr55tQU81Wev9+aLizA353tcOuso6cAV7qOp3YFrRGPffFQWyqDEZKGk5JR4tonTmFJZKEozV0ad7TFujPrnlSMLJSspPjvFmzstpVS2t9LMFe+3jkNr37xahQLxOSXeB+5EUSLbu1ROeQJt77eO8dla1wxUF3CIyynxPnAnmtzZ3iVzyhNoa791rM/WumagVqGk4Fkojjpi99Essbdny0nJgdGa0WKqgHsWiqMOzylXR4rP1rpmoF6hxOAO3ClBdC/wjim4+gTccwCeOAkX7IXLD8LWHhcntDyjpQSpPlvjmoGpAu4O3MlNUi/weqe9vAgPzvV22i3PaCnBID5b25qBKYXiDtzJSVKGdqzTjnXmTjRafXYKpgq4O3AnJ0m9wLFOu1R/eovR6rNTMKVQ3IE7OUlyp7WzfmoV5p+EpRXYswVmz4dtE/R22jHO3ElCo89OwVQBdwfu5CTJnZ6/h7t/BDP/C8s/efbhznfg6M/BVJM+8LM5cycZbT47BVMKxR24k5MUd9rtTDNzeuKnijdUxXzm9ATdzroPpfeBOxGYKuDuwJ2cpLjT+fsXWF7p/aFcXlll/v51H0rvA3ciUK9QfE9MJ4rMGSKx7jTam3sfeBLacrpLobqA+56YThSFMkRi3Gm0N/c+8Gg05nSXwvPAHRtYyd1WOg+tjDqnuxRjlwfue2I6USh1x9He3PvAo9Ca010KtQplkD0xYzLEU4lx8w75860Vu+PonuMSOeUFyemnteZ0l0JtAR/EZ8dkiKcQ6+ZbTwk3rdwdR/cc584pL0RuP601p7sUphx4CbSOSy0t33uyzZTw0+7AlaLVZ/u+m5GUctPujtVRwk9byjVJQa1CgXSfndNPe695JIO46Vhvbswda0TjPpJWck1S2LSAi8hW4AvAc+vn3xVCeJeI7AbuAHYAx4EbQgg/HvYAY312bj/tveaRpLrpVG9uxB1rRPM+khZyTVLY1IGLiADnhRCeFJFzgS8CNwNvBz4eQrhDRD4AfDWE8P6zfa8YB55CCT/tDjySFDftPlsdKa65LX66BMkOPFQ8Wd89t/4TgN8E7qofPwxcO5yhplPCT2t182pJcdNKe7rbjKV9JC3RyIGLyDlUmuQlwPuAB4DvhRBW6qc8BFzc52v3A/sBJicnBx3vWSnlp0v1mpshNt9acU93KbRle1jaR9ISjQp4COEnwCtE5AXAPHBZ0xcIIRwCDkGlUBLG2JiSfjp3r7kpYvOtlfd050ZjtoelfSQtEdVGGEL4HvBZ4DXAC0Rk7R+AS4CHhzu0eDwPXCEp+dYt3hcyad/NAljaR9ISmxZwEXlRfeaNiGwDXgfcR1XI31g/7UbgE5nG2BjPA1dIis9ucU+31mwP99k6aaJQdgKHaw8+AXwshPBJEbkXuENE/gL4L+BDGcfZCO/RVkiqz7bW092wp11ztkdJn61tDUArmxbwEMI9wCt7PH4KuCLHoFLxHm2FDOKzrfR0R/S0a8/2KOGzNa4BaEXtpfQpuANXSIt9NhC9BtB216x1DUArpgq4O3CFtNhnA9FrAG13zVrXALSiOgslFnfgSrHms2NIWANIds0JmevaXLPmNQCNmCrg7sAVY8Vnx5K4BhDtmhOyYzS6Zu1rANowpVDcgTvqKLEGkNBrr9U1t30NIBZTBdwduKOOEmsACb32Wl1z29cAYjGlUEo6cN8Ts8VoyylP8OyaXbPnpzTHVAEv5cB9T8wWozGnPMGza3fNnp/SDFMKZXZ2Y8zrGp1OdXxQut2NxRuq+zMz1XHHKCm5LiVI8OzTl04z0efXf4IJpi/1BaNxwFQBL5HV7XtithitOeUJnn3hgQVW6b1gtMoqCw/4gtE4YEqhQKUwTpyAAwfg5EnYuxcOHoTtfaKnY/Fe8xajOac80rNrduBOc8wV8PV+enER5uZ8T0xnCGjPKY/w7NoduNMMUwqlhJ8u4dkdpVw0Tf9fmYn6+HjgDtwGpgq474npZOWRBejjjWG1Pj4euAO3gSmF4ntiOtHE9HRrduCRaHfg2jJatGKqgPuemE4UsT3d2h14BJoduMaMFq2YUiieheI0puV7dWrNHNGa0aIVUwXcs1CcxrR8r06tmSNaM1q0YkqhaO/R9vyUAjR12r5XJ1MXT3HirSc48NkDnHzsJHsv3MvBKw+y/XlDumgiAe1uXhumCrjmHm3PTylAjNP2vTo3uObFpUXm7p3zPPAxQkIIxV5s37594dixY9m+f7cLu3f3biXsdKoz31Gc8WodlylWunBkd28tsrVTnTWfeZYc+3xjdJ/usvu23T11Ree8Dks3L41Eo2gd16gRkeMhhH3rHzflwLX2aHt+SgFinbYhn52CVtes1c1rxZRCgfxZKClod/MmSHHaJX12wn6VOSnpmmN7uj0PvDnmCnjuLJQUNLt5M6Q67RI+OzVDPCOlXHNqT7fngTfDHXgBtI7LFFqdttJxlXDN7rOHRyscuFbXrNXNm0Kr01aaIV7CNWv17JYwpVA074np+SkFSHHaud204vyU3K7Ze7rzY6qAa98T0/NTChDjtEu4aeX5KTlds/d058eUQvE9MZ3GlNrf0lB+SiyeOZ4fUwXc98R0GlPKTWt18wXwzPH8mFIo4HtiOg0p6aY156dkXAPQ7sAtZI5vWsBF5MXAR4AOEIBDIYTbRGQ7cCewC/gmcF0I4fF8Q22G74npNKK0m9aYn5J5DUCzA7eSOb5pH7iI7AR2hhC+LCLPB44D1wI3Ad8NIdwqIrcALwwhvONs38tCH7j3dBtBaX92MQrMX2sfuNZxnY3kPvAQwukQwpfr208A9wEXA9cAh+unHaYq6iPF98R0GtNiNw0UWQPQmmtiqT89yoGLyC7glcCXgE4I4XR96BEqxdLra/YD+wEmJyeTB9qEVD/tPd1Kyd2jXdBNq/OthdYANOaaaHfzMTQu4CJyPjAHvC2E8AMReeZYCCGISE8XE0I4BByCSqEMNtyzk+KnvadbKaXyQwq4aZW+teAagLZcE81uPpZGbYQici5V8f5oCOHj9cPLtR9f8+SP5hlic2L7wL2nWymlerQLoHaPxxb3p2vdDzSFTQu4VKfaHwLuCyG8+4xDR4Ab69s3Ap8Y/vDiiPXT3tOtFKX5ISmo9a0tXgPQ6uZTaKJQXgvcAHxNRL5SP/ZO4FbgYyLyFuBbwHVZRhhJjJ/2nm6lKM4PiUW1b9Xcn54ZjfuBprBpAQ8hfBGQPoevGu5whkNTP+093UpRnh8Sg3rfqrE/vQAa9wNNwdSl9LFMT8NEn5/AxER13BkBhvzs7Eum6Wzp/SHrbJlg9iX+ISuN2nWJBFpdwBcWYLV3VAOrq9VxZwQY8rPblhc4unOVzjk//XjnHDi6c5Vty/4hK43adYkEzGWhxOAOvCCxPd1W/OyTp5jaCku7YP5JOLUCe7bA7PmwbYKx8vmaiemzV70uEUmrC7g78EKk9nRb8LO1r982Addf0P+4k05sn736dYkIWq1Q3IEXwFBPdxKGfL5GUnx2q/rALeMOvACGerqTMOTzNZLis9vWB26WQRx4bH5KazHU053Mjim4+gTccwCeOAkX7IXLD8LW0fccq8toiSTVZ2vMaEmh1QU81YGn5qe0EkM93cmsXwNYXoQH54af6xKJyoyWSAbx2doyWlLYNA98mOTOA48lJdvb88Aj8dxtlfMfx0zsXliZx2Yk54FbJiXb2/NTImm7A1a6BmClF9qSz06h1QoF4rO9vXc8ASs93WvE9LQrXQOw1Aud6rPH3f+DF3AgLtvbe8cTsdDTDfE97UrXACz1QkO8z7bg/6HlCiUF7x1vMSk97Ur7wC31QsfiWSgtxnvHW0yKz1a6BtBmd2zF/4NRhZKzR9sduDFK+GylawBWeqFjGcT/a/Pm5gp47h5td+CGKOmzla4BWOiFjiXV/2v05qb6wEv0aHsfuBFS+rOV9nQ7caT0jo+637wVfeAlerRTescdhRjy2U4cKf5fqzdXr1BifHYpPx3bO+4oZBCfrTTXRCvavDHE+3+tffOqC3iszy7pp2N6xx2FpPpspbkmWtHojdeI8f9a++bVOnDPKXGy4g48O6P2xsNk1HMZOwee4rPdTzuNSfHZSnNNtKLVG6egtW9erUJJ9dnup53GxPZnK8010YpWb5yKxr55tQV8EJ/tflohsZsalyKmP1tprolWBvHGGhc+QV/fvNoCPjsL27fDd7+78dj27dVxZ0xI3dRYG2u5Jv0cuO9v+VOs5a3088b98lY0L3xqQ60Dd4xgaVNj7wOPIsUbWwqaKoHaM/D5+d5n31A9Pj/vmmQsaLLwp/AS874ozTXRSqw3brLwqUlhjBq1Bdw3HDaCxYW/lFwTrWsAkaS46RhvbG3hMzdqC7hvOGwEX/gzswZQwk1rvWBGK34hj5OXtl/8YmT+pS5kGfUFM1oZuwt5fMNhI7R94c/IxT+lLsrResGMVjZVKCLyYeD1wKMhhF+sH9sO3AnsAr4JXBdCeHzYg/MNh43Q5gAoI2sAJTdB0HjBjFaaOPB/AN4LfOSMx24BFkMIt4rILfX9dwx/eL7hsAnaHABlZA2g9CYI2i6Y0cqmCiWE8AVgfUPfNcDh+vZh4NrhDisN33BYIZb6wFNQuqlxLCmbIHtPd35SHXgnhHC6vv0I0OcTWhbfcFghRhxwMkbWACxtgmCJgdsIQwhBRPq2sojIfmA/wOTkZPT317ihgxOBEQf8U8T2dBu5+MfKJgglyZ3pklrAl0VkZwjhtIjsBB7t98QQwiHgEFRthDEvonlDB6chRhzwM6T2dCvd1DgWC5sglKJE33yqQjkC3FjfvhH4xFBGcwbd7sbiDdX9mZnq+HpmZze2Ha7R6XgA1kgw4oAB9/mRpHhzK5Ty/5sWcBG5HfgPYK+IPCQibwFuBV4nIv8D/FZ9f6j4hg5GMOKAAff5kbS5p7uU/99UoYQQ3tzn0FVDGUEfBtnQ4cQJOHAATp6EvXvh4MEqgtYZEZodcIzPNujzczvatvZ0l/L/5rNQFhdhbs6zUEaORgcc67ON+fxSudtt7Oku5f89C8VpJy3f1NgzR/Iy7J+vZ6F4FopzJik+25DP9x7tvJTy/2oVCngWiim05WGn+mzNPj8C79HOTwn/r7qAg2ehmEBjHvYgPlujz4+k7T3apcjt/9UqlBQ8C0UhWnunLfWnJzB96TQTfX79J5hg+lL/ZRkHTBVwz0JRiNbeaUM+O4WFBxZYpfcvyyqrLDzgvyzjgHqFEkOqA/c9NDOiuXdas89OWDOI6el2B24DUwU8xYH7HpqZ0d47rdFnJ6wZxPZ0uwO3gdo+8BRi+8C9b7wAhnqni5Dw80rpOfY+8PFi7PrAU4jtHfe+8QK03DVHk7BmkNLT3eacEkuYUigQ1zs+SN+4e/MIjLnmrCSsGaT6bM05JbkzWqxgroBD897xYeWtgHvzTTHimrOTsGYwiM/WmFNSKqPFAqYceCyet9JitLr5Qg5cK5bmMkxa4cBj8byVFmOoP92Sz/aMljhMKpQYP+15Ky2ldH96jGtPWDPQ7LNjSPX5bXXm5gp4ip/2vJUWUrI/PcW1J6wZaPTZsaT4/DY7c1MOvISfdgduhFIOXKtrV0qsA2+LM2+FAy/hp33fTSOU6k/X6tqVEuvz2+7MTSmUUn461ps7StkxBVefgHsOwBMn4YK9cPlB2DrEDVQ1Z8Gg0x3H+Py2Z7qYKuAl/XSMN3eUst5NLy/Cg3PD7QNXnAWj2R039fltz3QxpVA8D9xpTKmccqW5492nuxuKN1TaYeb2GbpPjyinPZLZy2Y36JY1Oud1mL3Mdq67qQLueeBOY0q5aaVZMFbcsaUe+BRMKRTv0XYaU9JNl3DtkWh3xzFu3koPfAqmCrj3aDuNGWUfeA7XHolmd5zi5i30wKdgSqG4A3caU8pNK90TVKs7tuLmS2GqgLsDdxrT8j5wre7YipsvhSmF4g7ciaJETrniPvAUd5y7b1y7m9eGqQLuDtyJJndOueI+cIhzxyX6xjW7eY2YUijuwB11XDRN/1+zifq4fkq5aa1uXiumCrg7cEcdjywAfT6UrNbH9VPKTWt181oxpVDcgTtFiMn2VuzAYyjppi31dedeMxiogIvINHAbcA7wwRDCrUMZVSLuwJ3sxGZ7K3fgTSntpi30dZdYM0hWKCJyDvA+4HeAlwFvFpGXDWVUibgDd7KS0tOtNAslFnfTcZRaMxjEgV8B3B9COBVC+DFwB3DNUEaViDtwJyspPd1Ks1BicTcdR6k1g0EUysXAg2fcfwj4lfVPEpH9wH6AycnJAV5uc9yBO1lJ9dkl+s0LYMlN56bUmkH2RcwQwiHgEFRbquV8LXfgTlYG8dm5+80LYcFNl6DUmsEgCuVh4MVn3L+kfmxkzM5u3OpsjU6nOu44yRjx2U5+Sq0ZDFLA7wZeKiK7ReQ5wJuAI0MZVSK+X6WTFSM+28lPqTWDgXalF5GrgfdQtRF+OITwl2d7fu5d6dfodn2/SicjK92x99lOGbpPd4eyZtBvV/qBCngspQq44ziOJfoVcFOX0juO47QJL+CO4zhjihdwx3GcMcULuOM4zphSdBFTRL4NfAu4EPhOsRfWR5vn3+a5Q7vn73NP5+dDCC9a/2DRAv7Mi4oc67Wi2hbaPP82zx3aPX+f+/Dn7grFcRxnTPEC7jiOM6aMqoAfGtHraqHN82/z3KHd8/e5D5mROHDHcRxncFyhOI7jjClewB3HccaUrAVcRKZF5KSI3C8it/Q4/lwRubM+/iUR2ZVzPCVpMPebROTbIvKV+s8fjmKcORCRD4vIoyLy9T7HRUT+pv7Z3CMiryo9xpw0mP+VIvL9M977A6XHmAsRebGIfFZE7hWREyJyc4/nmHz/G859uO99CCHLH6qI2QeAPcBzgK8CL1v3nLcCH6hvvwm4M9d4Sv5pOPebgPeOeqyZ5v9rwKuAr/c5fjXwaUCAVwNfGvWYC8//SuCTox5nprnvBF5V334+8N89Pvsm3/+Gcx/qe5/zDLzJpsfXAIfr23cBV4mIZBxTKdRt+FySEMIXgO+e5SnXAB8JFf8JvEBEdpYZXX4azN8sIYTTIYQv17efAO6j2j/3TEy+/w3nPlRyFvBemx6vn8wzzwkhrADfB3ZkHFMpmswd4Pfq/0LeJSIv7nHcKk1/PpZ5jYh8VUQ+LSK/MOrB5KBWoq8EvrTukPn3/yxzhyG+976IOTqOArtCCL8EfIZn/yfi2OfLVNkWLwf+FviX0Q5n+IjI+cAc8LYQwg9GPZ6SbDL3ob73OQt4k02Pn3mOiGwBfgZ4LOOYSrHp3EMIj4UQ/q+++0HglwuNTQPqNsQuSQjhByGEJ+vbnwLOFZELRzysoSEi51IVsI+GED7e4ylm3//N5j7s9z5nAW+y6fER4Mb69huBfw+16R9zNp37Ouf3Bipf1haOAL9fdyO8Gvh+COH0qAdVChG5aG2tR0SuoPo9tHDiQj2vDwH3hRDe3edpJt//JnMf9nu/JfULNyOEsCIifwz8K89uenxCRP4cOBZCOEI12X8UkfupFn3elGs8JWk49z8RkTcAK1Rzv2lkAx4yInI71Wr7hSLyEPAu4FyAEMIHgE9RdSLcDzwF/MFoRpqHBvN/I/BHIrICdIE3GTlxAXgtcAPwNRH5Sv3YO4FJMP/+N5n7UN97v5TecRxnTPFFTMdxnDHFC7jjOM6Y4gXccRxnTPEC7jiOM6Z4AXccxxlTvIA7juOMKV7AHcdxxpT/B9duur4+fWlIAAAAAElFTkSuQmCC\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {
|
||
"needs_background": "light"
|
||
},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import numpy as np\n",
|
||
"fig = plt.figure()\n",
|
||
"ax = fig.add_subplot(111)\n",
|
||
"setosa = iris_data[:50]\n",
|
||
"versicolor = iris_data[50:100]\n",
|
||
"virginica = iris_data[100:150]\n",
|
||
"# ax.scatter(setosa['sepal.length'],np.arange(50), color='blue', lw=2)\n",
|
||
"# ax.scatter(versicolor['sepal.length'],np.arange(50), color='orange', lw=2)\n",
|
||
"# ax.scatter(virginica['sepal.length'],np.arange(50), color='green', lw=2) \n",
|
||
"\n",
|
||
"ax.scatter(setosa['petal.width'],np.arange(50), color='blue', lw=2)\n",
|
||
"ax.scatter(versicolor['petal.width'],np.arange(50), color='orange', lw=2)\n",
|
||
"ax.scatter(virginica['petal.width'],np.arange(50), color='green', lw=2) "
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "Yabcm4Rei2ue"
|
||
},
|
||
"source": [
|
||
"![GaussianNB.png]()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {
|
||
"id": "dsf6FnlgjiOL"
|
||
},
|
||
"source": [
|
||
"# Funkcja gęstości prawdopodobieństwa rozkładu normalnego \n",
|
||
"![gestosc.svg]()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {
|
||
"id": "v0oeHebytjNp"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"import numpy as np\n",
|
||
"import pandas as pd\n",
|
||
"import scipy.stats as stats\n",
|
||
"import matplotlib.pyplot as plt\n",
|
||
"import seaborn as sns\n",
|
||
"from sklearn.model_selection import train_test_split\n",
|
||
"sns.set(style=\"whitegrid\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {
|
||
"id": "fOYTA3VVtjNw"
|
||
},
|
||
"outputs": [],
|
||
"source": [
|
||
"class NaiveBayesClassifier():\n",
|
||
" def calc_prior(self, features, target):\n",
|
||
" '''\n",
|
||
" Wyliczenie prawdopodobieństwa a priori\n",
|
||
" '''\n",
|
||
" self.prior = (features.groupby(target).apply(lambda x: len(x)) / self.rows).to_numpy()\n",
|
||
"\n",
|
||
" return self.prior\n",
|
||
" \n",
|
||
" def calc_statistics(self, features, target):\n",
|
||
" '''\n",
|
||
" Wyliczenie średnich i wariancji dla danych\n",
|
||
" ''' \n",
|
||
" self.mean = features.groupby(target).apply(np.mean).to_numpy()\n",
|
||
" self.var = features.groupby(target).apply(np.var).to_numpy()\n",
|
||
" \n",
|
||
" return self.mean, self.var\n",
|
||
" \n",
|
||
" def gaussian_density(self, class_idx, x): \n",
|
||
" '''\n",
|
||
" Wyliczenie prawdopodobieństwa z rozkładu normalnego \n",
|
||
" (1/√2pi*σ) * exp((-1/2)*((x-μ)^2)/(2*σ²))\n",
|
||
" μ -średnia\n",
|
||
" σ² - wariancja\n",
|
||
" σ - odchylenie standardowe\n",
|
||
" '''\n",
|
||
" mean = self.mean[class_idx]\n",
|
||
" var = self.var[class_idx]\n",
|
||
" \n",
|
||
" numerator = np.exp((-1/2)*((x-mean)**2) / (2 * var)) # Licznik wzoru na gęstość rozkładu normalnego \n",
|
||
" denominator = np.sqrt(2 * np.pi * var) # Mianownik wzoru na gęstość rozkładu normalnego \n",
|
||
" prob = numerator / denominator\n",
|
||
" \n",
|
||
" return prob\n",
|
||
" \n",
|
||
" def classify(self, x):\n",
|
||
" '''\n",
|
||
" Wyliczenie prawdopodobieństwa a posteriori i zwrócenie klasy, dla której prawdopodobieństwo jest najwyższe\n",
|
||
" '''\n",
|
||
" posteriors = []\n",
|
||
" posteriors_no_log = []\n",
|
||
"\n",
|
||
" # calculate posterior probability for each class\n",
|
||
" for i in range(self.count):\n",
|
||
" prior = np.log(self.prior[i]) # Do predykcji używane jest prawodopodobieństwo logarytmiczne\n",
|
||
" prior_no_log = self.prior[i] # Zwykłe prawdopodobieństwo liczymy, żeby zwrócić je z predykcjami\n",
|
||
"\n",
|
||
" conditional = np.sum(np.log(self.gaussian_density(i, x))) \n",
|
||
" conditional_no_log = np.prod(self.gaussian_density(i, x))\n",
|
||
"\n",
|
||
" posterior = prior + conditional\n",
|
||
" posterior_no_log = prior_no_log * conditional_no_log\n",
|
||
"\n",
|
||
" posteriors.append(posterior)\n",
|
||
" posteriors_no_log.append(posterior_no_log)\n",
|
||
"\n",
|
||
" # Zwracamy klasę o największym prawdopodobieństwie\n",
|
||
" return self.classes[np.argmax(posteriors)], np.max(posteriors_no_log)\n",
|
||
"\n",
|
||
" def fit(self, features, target):\n",
|
||
" '''\n",
|
||
" Główna metoda trenująca model\n",
|
||
" '''\n",
|
||
" self.classes = np.unique(target)\n",
|
||
" self.count = len(self.classes)\n",
|
||
" self.feature_nums = features.shape[1]\n",
|
||
" self.rows = features.shape[0]\n",
|
||
" \n",
|
||
" self.calc_statistics(features, target)\n",
|
||
" self.calc_prior(features, target)\n",
|
||
" \n",
|
||
" def predict(self, features):\n",
|
||
" '''\n",
|
||
" Predykcja wartości dla każdego wiersza\n",
|
||
" '''\n",
|
||
" preds = [self.classify(f) for f in features.to_numpy()]\n",
|
||
" return preds\n",
|
||
"\n",
|
||
" def accuracy(self, y_test, y_pred):\n",
|
||
" '''\n",
|
||
" Wyliczenie accuracy modelu\n",
|
||
" '''\n",
|
||
" accuracy = np.sum(y_test == y_pred) / len(y_test)\n",
|
||
" return accuracy\n",
|
||
"\n",
|
||
" def visualize(self, y_true, y_pred, target):\n",
|
||
" '''\n",
|
||
" Narysowanie wykresu porównującego rozkład klas prawdziwych i przewidzianych\n",
|
||
" '''\n",
|
||
" tr = pd.DataFrame(data=y_true, columns=[target])\n",
|
||
" pr = pd.DataFrame(data=y_pred, columns=[target])\n",
|
||
" \n",
|
||
" \n",
|
||
" fig, ax = plt.subplots(1, 2, sharex='col', sharey='row', figsize=(15,6))\n",
|
||
" \n",
|
||
" sns.countplot(x=target, data=tr, ax=ax[0], alpha=0.7, hue=target, dodge=False)\n",
|
||
" sns.countplot(x=target, data=pr, ax=ax[1], alpha=0.7, hue=target, dodge=False)\n",
|
||
" \n",
|
||
" ax[0].tick_params(labelsize=12)\n",
|
||
" ax[1].tick_params(labelsize=12)\n",
|
||
" ax[0].set_title(\"Prawdziwe wartości\", fontsize=18)\n",
|
||
" ax[1].set_title(\"Predykcje\", fontsize=18)\n",
|
||
" plt.show()\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Pitność wody"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 3,
|
||
"metadata": {
|
||
"colab": {
|
||
"base_uri": "https://localhost:8080/",
|
||
"height": 382
|
||
},
|
||
"id": "5-riUAGntjN2",
|
||
"outputId": "f87f047d-bc71-41ef-a43a-17b6f7cf84c3"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"(2948, 9) (2948,)\n",
|
||
"(328, 9) (328,)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Preprocessing danych\n",
|
||
"\n",
|
||
"# Uzupełnienie pustych wartości w kolumnach\n",
|
||
"def fill_nan(df):\n",
|
||
" for index, column in enumerate(df.columns[:9]):\n",
|
||
" df[column] = df[column].fillna(df.groupby('Potability')[column].transform('mean'))\n",
|
||
" return df\n",
|
||
"\n",
|
||
"# Wczytywanie danych\n",
|
||
"df = pd.read_csv(\"water_potability.csv\")\n",
|
||
"\n",
|
||
"df = fill_nan(df)\n",
|
||
"\n",
|
||
"# Zrandomizowanie kolejności danych w datasecie\n",
|
||
"df = df.sample(frac=1, random_state=10).reset_index(drop=True)\n",
|
||
"\n",
|
||
"# Podział na atrybuty i przewidywane wartości\n",
|
||
"X, y = df.iloc[:, :-1], df.iloc[:, -1]\n",
|
||
"\n",
|
||
"# Normalizacja i skalowanie danych\n",
|
||
"from sklearn.preprocessing import StandardScaler\n",
|
||
"sc = StandardScaler()\n",
|
||
"X = sc.fit_transform(X.to_numpy())\n",
|
||
"X = pd.DataFrame(X, columns=df.columns.values.tolist()[:-1])\n",
|
||
"\n",
|
||
"# Podział na dane trenujące i testowe, z uwzględnieniem równego rozłożenia danych\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, stratify=y, random_state=1)\n",
|
||
"\n",
|
||
"print(X_train.shape, y_train.shape)\n",
|
||
"print(X_test.shape, y_test.shape)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"id": "O82SGzK6tjN5"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<div>\n",
|
||
"<style scoped>\n",
|
||
" .dataframe tbody tr th:only-of-type {\n",
|
||
" vertical-align: middle;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe tbody tr th {\n",
|
||
" vertical-align: top;\n",
|
||
" }\n",
|
||
"\n",
|
||
" .dataframe thead th {\n",
|
||
" text-align: right;\n",
|
||
" }\n",
|
||
"</style>\n",
|
||
"<table border=\"1\" class=\"dataframe\">\n",
|
||
" <thead>\n",
|
||
" <tr style=\"text-align: right;\">\n",
|
||
" <th></th>\n",
|
||
" <th>ph</th>\n",
|
||
" <th>Hardness</th>\n",
|
||
" <th>Solids</th>\n",
|
||
" <th>Chloramines</th>\n",
|
||
" <th>Sulfate</th>\n",
|
||
" <th>Conductivity</th>\n",
|
||
" <th>Organic_carbon</th>\n",
|
||
" <th>Trihalomethanes</th>\n",
|
||
" <th>Turbidity</th>\n",
|
||
" </tr>\n",
|
||
" </thead>\n",
|
||
" <tbody>\n",
|
||
" <tr>\n",
|
||
" <th>1022</th>\n",
|
||
" <td>0.003078</td>\n",
|
||
" <td>0.688791</td>\n",
|
||
" <td>0.846257</td>\n",
|
||
" <td>1.428934</td>\n",
|
||
" <td>-0.858263</td>\n",
|
||
" <td>0.002792</td>\n",
|
||
" <td>0.913790</td>\n",
|
||
" <td>0.232417</td>\n",
|
||
" <td>2.319505</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>3191</th>\n",
|
||
" <td>-0.587365</td>\n",
|
||
" <td>0.223203</td>\n",
|
||
" <td>-0.731867</td>\n",
|
||
" <td>0.397503</td>\n",
|
||
" <td>0.759893</td>\n",
|
||
" <td>0.330607</td>\n",
|
||
" <td>0.094379</td>\n",
|
||
" <td>0.282563</td>\n",
|
||
" <td>0.235024</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>13</th>\n",
|
||
" <td>0.003078</td>\n",
|
||
" <td>-0.241037</td>\n",
|
||
" <td>0.773051</td>\n",
|
||
" <td>0.580019</td>\n",
|
||
" <td>1.334369</td>\n",
|
||
" <td>-0.049130</td>\n",
|
||
" <td>-1.121422</td>\n",
|
||
" <td>-0.200432</td>\n",
|
||
" <td>-0.946356</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2068</th>\n",
|
||
" <td>-2.176058</td>\n",
|
||
" <td>1.443006</td>\n",
|
||
" <td>-1.626771</td>\n",
|
||
" <td>-4.164610</td>\n",
|
||
" <td>-0.033706</td>\n",
|
||
" <td>-1.050763</td>\n",
|
||
" <td>-0.391328</td>\n",
|
||
" <td>-0.398649</td>\n",
|
||
" <td>-0.298341</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1484</th>\n",
|
||
" <td>0.213047</td>\n",
|
||
" <td>0.403036</td>\n",
|
||
" <td>-0.464729</td>\n",
|
||
" <td>0.070417</td>\n",
|
||
" <td>0.021560</td>\n",
|
||
" <td>-0.952776</td>\n",
|
||
" <td>-0.213330</td>\n",
|
||
" <td>0.111419</td>\n",
|
||
" <td>-0.235893</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>...</th>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" <td>...</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>691</th>\n",
|
||
" <td>0.003078</td>\n",
|
||
" <td>1.199106</td>\n",
|
||
" <td>-0.003483</td>\n",
|
||
" <td>-0.670308</td>\n",
|
||
" <td>-0.069513</td>\n",
|
||
" <td>0.185754</td>\n",
|
||
" <td>-0.466010</td>\n",
|
||
" <td>0.031975</td>\n",
|
||
" <td>0.676276</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1283</th>\n",
|
||
" <td>-2.034004</td>\n",
|
||
" <td>-1.508135</td>\n",
|
||
" <td>0.255310</td>\n",
|
||
" <td>0.083839</td>\n",
|
||
" <td>-1.413707</td>\n",
|
||
" <td>0.694074</td>\n",
|
||
" <td>-1.110579</td>\n",
|
||
" <td>0.232996</td>\n",
|
||
" <td>2.544703</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>2818</th>\n",
|
||
" <td>-0.702987</td>\n",
|
||
" <td>-0.575677</td>\n",
|
||
" <td>0.755056</td>\n",
|
||
" <td>0.664695</td>\n",
|
||
" <td>0.021560</td>\n",
|
||
" <td>-0.489334</td>\n",
|
||
" <td>0.371852</td>\n",
|
||
" <td>-2.272990</td>\n",
|
||
" <td>-1.764684</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1330</th>\n",
|
||
" <td>1.525943</td>\n",
|
||
" <td>0.497074</td>\n",
|
||
" <td>-0.714355</td>\n",
|
||
" <td>-1.024237</td>\n",
|
||
" <td>-1.022037</td>\n",
|
||
" <td>-0.327074</td>\n",
|
||
" <td>-1.107341</td>\n",
|
||
" <td>0.517432</td>\n",
|
||
" <td>-1.230528</td>\n",
|
||
" </tr>\n",
|
||
" <tr>\n",
|
||
" <th>1926</th>\n",
|
||
" <td>-0.043558</td>\n",
|
||
" <td>-0.882359</td>\n",
|
||
" <td>-0.456141</td>\n",
|
||
" <td>-0.770271</td>\n",
|
||
" <td>0.795189</td>\n",
|
||
" <td>0.560306</td>\n",
|
||
" <td>-1.086081</td>\n",
|
||
" <td>-1.356820</td>\n",
|
||
" <td>0.172521</td>\n",
|
||
" </tr>\n",
|
||
" </tbody>\n",
|
||
"</table>\n",
|
||
"<p>2948 rows × 9 columns</p>\n",
|
||
"</div>"
|
||
],
|
||
"text/plain": [
|
||
" ph Hardness Solids Chloramines Sulfate Conductivity \\\n",
|
||
"1022 0.003078 0.688791 0.846257 1.428934 -0.858263 0.002792 \n",
|
||
"3191 -0.587365 0.223203 -0.731867 0.397503 0.759893 0.330607 \n",
|
||
"13 0.003078 -0.241037 0.773051 0.580019 1.334369 -0.049130 \n",
|
||
"2068 -2.176058 1.443006 -1.626771 -4.164610 -0.033706 -1.050763 \n",
|
||
"1484 0.213047 0.403036 -0.464729 0.070417 0.021560 -0.952776 \n",
|
||
"... ... ... ... ... ... ... \n",
|
||
"691 0.003078 1.199106 -0.003483 -0.670308 -0.069513 0.185754 \n",
|
||
"1283 -2.034004 -1.508135 0.255310 0.083839 -1.413707 0.694074 \n",
|
||
"2818 -0.702987 -0.575677 0.755056 0.664695 0.021560 -0.489334 \n",
|
||
"1330 1.525943 0.497074 -0.714355 -1.024237 -1.022037 -0.327074 \n",
|
||
"1926 -0.043558 -0.882359 -0.456141 -0.770271 0.795189 0.560306 \n",
|
||
"\n",
|
||
" Organic_carbon Trihalomethanes Turbidity \n",
|
||
"1022 0.913790 0.232417 2.319505 \n",
|
||
"3191 0.094379 0.282563 0.235024 \n",
|
||
"13 -1.121422 -0.200432 -0.946356 \n",
|
||
"2068 -0.391328 -0.398649 -0.298341 \n",
|
||
"1484 -0.213330 0.111419 -0.235893 \n",
|
||
"... ... ... ... \n",
|
||
"691 -0.466010 0.031975 0.676276 \n",
|
||
"1283 -1.110579 0.232996 2.544703 \n",
|
||
"2818 0.371852 -2.272990 -1.764684 \n",
|
||
"1330 -1.107341 0.517432 -1.230528 \n",
|
||
"1926 -1.086081 -1.356820 0.172521 \n",
|
||
"\n",
|
||
"[2948 rows x 9 columns]"
|
||
]
|
||
},
|
||
"execution_count": 4,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"X_train"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 5,
|
||
"metadata": {
|
||
"id": "a3jkTMFLtjN6"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/andrzej/anaconda3/lib/python3.9/site-packages/numpy/core/fromnumeric.py:3438: FutureWarning: In a future version, DataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'frame.mean(axis=0)' or just 'frame.mean()'\n",
|
||
" return mean(axis=axis, dtype=dtype, out=out, **kwargs)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Trenowanie modelu klasyfikatora\n",
|
||
"x = NaiveBayesClassifier()\n",
|
||
"x.fit(X_train, y_train)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 6,
|
||
"metadata": {
|
||
"id": "CoC22aNgtjN9"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0"
|
||
]
|
||
},
|
||
"execution_count": 6,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Predykcja wartości dla danych testowych\n",
|
||
"predictions = x.predict(X_test)\n",
|
||
"\n",
|
||
"# Prawdopodobieństwa kolejnych predykcji\n",
|
||
"probabilities = [p[1] for p in predictions]\n",
|
||
"\n",
|
||
"# Przewidziana wartość\n",
|
||
"predictions = [p[0] for p in predictions]\n",
|
||
"predictions[0]"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 7,
|
||
"metadata": {
|
||
"id": "JR06zodmtjN9"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"6.280487804878049e-01"
|
||
]
|
||
},
|
||
"execution_count": 7,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"# Wyliczenie accuracy modelu\n",
|
||
"x.accuracy(y_test, predictions)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 8,
|
||
"metadata": {
|
||
"id": "1jW0QPootjN_"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0.14084507042253522"
|
||
]
|
||
},
|
||
"execution_count": 8,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.metrics import f1_score\n",
|
||
"\n",
|
||
"f1_score(y_test, predictions)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 9,
|
||
"metadata": {
|
||
"id": "vEVogTmAtjOA"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0 0.609756\n",
|
||
"1 0.390244\n",
|
||
"Name: Potability, dtype: float64"
|
||
]
|
||
},
|
||
"execution_count": 9,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"y_test.value_counts(normalize=True)"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 10,
|
||
"metadata": {
|
||
"id": "jCVOdBZytjOB"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGQCAYAAAD2lq6fAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABAyUlEQVR4nO3deXRU9f3/8ddkhUkiCEjYBUMWMBIigbBbkFWDrNYopgq4oBCRSiIFKYpaBSpUIoWKNLZYAYuyBDzsilsAsbhAEwggqxgLASQZyHp/f/DN/TEkQMg2Se7zcY7nOJ977+e+Z8B5+5q72QzDMAQAAAAAsBw3VxcAAAAAAHANAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQArCM9PR0JSQkaPv27a4uBQAAoEogEALlIDg4WJMnT77h7SZPnqzg4OAKqAhXysnJ0fjx47Vjxw61b9/+hrffsWOHgoOD9dFHH5V/cQCAcnP8+HEFBwcrISGhVNuXd2+mf6Cq83B1AbCuHTt26He/+53TmN1uV6tWrTR48GA9/PDDcnd3d1F1cKXNmzcrJSVFsbGx5Tbn9OnTZRiGFi5cqFq1apXbvACAS+jrQPVEIITLRUVFqWfPnjIMQ7/88otWrlypP/3pTzpw4IBefvllV5dXoV5++WW99NJLri6jytm8ebNWrlxZboHw559/VtOmTTV58mT5+vqWao6OHTvq+++/l4cHX5sAcC1W7uvFoX+gquNvJlyubdu2Gjx4sPn6oYce0sCBA/Xvf/9bEyZMUIMGDYrdLjMzs9T/c19VeHp6urqEKqWi/kwbNWqk8ePHl2kONzc3eXt7l1NFAFBzlaav14SefjX0D1R1XEOIKsfX11fh4eEyDEPHjh2TJPXu3VsxMTH673//qzFjxqhDhw667777JF1qInPnztX999+vyMhIhYaGqm/fvvrzn/+sCxcumPNmZ2erXbt2Ra71mzZtmoKDg/Xqq686jT/77LO68847lZeXZ46lpaVpzJgxat++vTp16qRJkybp9OnTRd5DTEyMgoODi/2nd+/e5npXXqfw0UcfKTg4WDt27DDHcnNzFR4eruDgYKWkpJjjmZmZuv322/Xiiy867fuHH37QuHHjzM+if//+WrBggdP7uJqYmBin+iQpKSlJwcHBTs1dkt5//30FBwfr+++/lyQVFBRowYIFGjlypLp166bQ0FD95je/0fTp03XmzBmnbS+/vuPjjz/WsGHD1K5dO73yyiuKiYnRypUrJcnpc7v82ovU1FTzPd5xxx265557tGjRIuXn5zvt5+TJk/rDH/6gXr16KTQ0VF26dFF0dLQ5fyHDMPTBBx/o/vvvV3h4uMLDwzVo0CC9+eab5jpcAwIApXNlX79WT5ekw4cPKy4uTt27d1doaKh69+6tmTNnyuFwFJl7165dio6OVrt27dS1a1fNmDGjyHr//e9/FRwcrLlz5xZb3+OPP64777yz2PkLXbx4UU899ZRCQ0OVlJRkjpelfxiGoffff1/Dhg1TWFiYwsPDFRMTw43PUOk4QogqxzAMHTlyRJJ08803m+M//fSTHnnkEQ0YMED9+vUzv7jT09O1YsUK9evXT1FRUfLw8NDOnTv1zjvvKCUlRYsXL5YkeXt7q3379kW+aLdv3y43NzenccMwtHPnTnXs2NE8xePYsWMaOXKkcnJyNHLkSDVu3FiffPKJHnvssSLvYezYsRoxYoTT2LFjx5SQkKD69etf9b136dJFkpScnKzIyEhJ0nfffSeHwyE3NzclJyerTZs2ki41wby8PHXu3Nncftu2bRo3bpxuvfVWjR49WnXq1NG3336refPmKSUlRfPmzbvWR6/IyEglJCTo6NGjatGihdPns2/fPmVkZKhevXrmuK+vr26//XZJl4Lr4sWL1a9fP919992qXbu2fvjhB3344Yf6z3/+ow8//FBeXl5O+9u8ebOWLFmiBx98UNHR0fL19VWdOnVUUFCgXbt2adasWea6d955p6RLgTcmJkYeHh4aOXKkGjRooE8++UR//vOflZqaqjfeeEOSlJeXp1GjRik9PV0PPfSQWrZsqczMTO3bt0+7du3S0KFDzbnj4uKUlJSksLAwjR07Vn5+fjp06JA2bNigCRMmXPMzAwBcW3F9/Wo9fc+ePXrkkUd000036YEHHpC/v79SU1O1ZMkS7d69W0uWLDHPrvnuu+80atQo+fj46PHHH5efn58+/vhjPf/88077b9u2rW6//XatXLlSzzzzjNN1jOnp6fryyy81fPhw2e32Yus/c+aMnnrqKe3fv19vv/22unbtai4rS/+Ii4vTunXr1L9/fw0bNkw5OTlKSkrS6NGjlZCQoLvvvvsGP2mglAzARbZv324EBQUZCQkJxunTp43Tp08bKSkpxtSpU42goCDjt7/9rblur169jKCgIOODDz4oMk92draRk5NTZHzu3LlGUFCQ8d1335lj8+fPN4KCgowff/zRMAzD+Omnn4ygoCBj0qRJRlBQkPG///3PMAzDSE1NNYKCgoy///3v5ra///3vjaCgICM5OdkcKygoMJ5++mkjKCjIeP7556/6Xs+ePWv079/f6NSpk3H48GFz/PnnnzeCgoKc1u3Tp4/xwAMPmK8TEhKMyMhIY8yYMcZjjz1mjr/22mtGcHCwcfr0acMwDOPixYtG165djYceesjIzc11mjMxMdEICgoytm/fftUaDcMwvv76ayMoKMhYvny5Oda7d2/z81m3bp35viMjI40nn3zS6bO4cOFCkTk/+OADp20NwzCOHTtmBAUFGW3btjUOHDhQZJviPpdCDzzwgNGmTRsjJSXFad/PPPOMERQUZHz11VeGYRhGSkqKERQUZLz99tvXfM/r1q0z/w7k5+c7Lbv8deHf1w8//PCa8wGAVZW0r1+rpw8aNMjo37+/cf78eafxjRs3FvkOfuCBB4zbb7/dOHTokDmWnZ1tDB8+3AgKCjLmzZtnji9btswICgoyPv30U6d5//rXvxb5f4XLe9CxY8eM/v37G926dTP27t3rtG1Z+kfh+1m2bJnTdrm5ucbQoUONXr16GQUFBUU+H6AicMooXC4hIUFdunRRly5dNHjwYH344Yfq3bu35s+f77Re3bp1NWzYsCLbe3l5mb8W5uXl6dy5c8rIyDB/wfvuu+/MdQuPphUeDUxOTpa7u7tiY2Nls9nM8cJTNgvXLygo0NatWxUaGup0RM5msxV7hPByubm5io2N1fHjxzV//nzdeuut11y/c+fO2rNnj7KyssxaIiMj1bVrV+3atUu5ubnmeHBwsHnE7ssvv9SpU6c0bNgw/frrr8rIyDD/6dmzp7nOtYSFhclut5ufw4kTJ3T8+HFFRUUpKCjIHN+3b5/OnDlT5LMovHtnfn6+WUPhOoWnll7urrvuUkBAwDVrutzp06e1e/du9e7dWyEhIU77Hjt2rCRp06ZNkiQ/Pz/zcyrutN5Chaf+PP/883Jzc/5KvPI1AOD6StLXi+vp+/bt0759+xQVFaWcnBynPtahQwfZ7Xazj13eD1q1amXO4eXlpUcffbRITVFRUbLb7VqxYoU5ZhiGPvroIwUFBaldu3ZFtklJSVF0dLQMw9DSpUvVtm1bp+Vl6R9r1qyRj4+P+vTp4/Q+f/31V/Xu3VsnTpzQ4cOHrzkHUF44ZRQu98ADD2jAgAGy2WyqXbu2WrZsqbp16xZZr3nz5le9XfW//vUvLVu2TAcOHFBBQYHTsnPnzpn/3q5dOzPwREdHa/v27QoNDVWLFi3MwBMVFaXt27erbt26Zug4ffq0HA6HbrvttiL7bt269TXf3x//+Eft2LFDM2fOVERExPU+DnXu3FkffPCBdu3apcjISH377beaMmWKwsLCNHPmTH3//fdq3bq1UlNTnW7vffDgQUnSlClTrjr3qVOnrrlvT09P3XnnnWYgTk5OloeHhyIiIhQZGanPPvtM0v8P1JcHQkn6+OOPlZiYqJSUFDO4Frr8z6FQy5Ytr1nPlY4fPy6p+M88ICBAbm5u5nWnTZs21dixY/X222+re/fuatOmjTp37qwBAwY4Nf4jR47olltuuerNiwAAN6Ykfb24nl7YxxISEq76DMHCPlb4XV/Svuzj46OoqCitXLlSp0+fVv369bVjxw4dPXr0qn1z5MiRstvtWrp0qfnj6+XK0j8OHjyorKwsp9NPr3T69GmnsAtUFAIhXO7WW2+95hdiodq1axc7npiYqNdff13du3fX7373OzVs2FCenp5KT0/X5MmTZRiGuW5huNmxY4cMw9COHTvMm6V07txZW7ZsMa9f69y5s2w2mySZcxS+LqmFCxfqo48+0lNPPaUhQ4aUaJvLj2J6enoqJydHnTt3NhtqcnKyTp8+rYKCAqdAVlhjfHy8eZ3hlRo2bFii/X/xxRdKS0vT9u3bdccdd8jHx0edO3fWkiVL9NNPP2n79u26+eabnW6Is3HjRk2cOFHt2rXTlClT1LhxY3l7eys/P1+PPfaY059Doav9mV5NcXNcy8SJEzVixAh9+umn2rVrl1asWKHFixfrscceU1xcnDnnjf65AgCuriR9/Vrf/6NHj1aPHj2KXXbTTTdJunZfvlqv+O1vf6sPPvhAq1ev1ujRo7VixQp5eXkVuWlaoaioKC1fvlz//Oc/9eyzzxa7n9L2D8MwVK9ePfO69+IEBgaWam7gRhEIUe2tXr1aTZs21aJFi5xO0Sg8mnWlzp0767PPPtP69ev1888/mzdy6dKli/7xj39o48aNOnfunHlTF0mqX7++7Ha7+evl5Q4cOFDsfj7++GP95S9/0T333HNDNyapX7++AgMDtX37dnl4eKhRo0bmL4SRkZHavn27zpw5I3d3d3Xs2NHcrvBoW+3atUsUsK+mMGQmJydr+/bt5s1xIiMj5e7uri+//FK7du1St27dnBrh6tWr5e3trX/+859Ojb64z+x6rtZgmzdvLqn4z/zQoUMqKCgw17l8m5iYGMXExCg7O1tjxozRO++8o9GjR6t+/fpq1aqVtmzZolOnTnGUEABcqPCSCjc3t+v2scIbnxXXY67Wd+644w61bdtWK1as0IgRI7Rp0yb16dOn2LOSJOmll16Sp6eneafuSZMmOS0vS/+49dZbdfjwYYWFhcnHx+eGtgXKGxfIoNpzc3OTzWZz+kUwLy9PixYtKnb9wsCTkJAgLy8v8+6VhXcULTxN5fKjb+7u7urVq5f27NlT5G6k77zzTpF9fPvtt5o8ebLCwsL0+uuv3/AviJ07d1Zqaqo2bdrkVEfhKaSfffaZQkNDnZ7Z1L17d9WvX1+LFi3S2bNni8x58eJFZWZmXnfft99+u+rUqaNly5bpf//7n7l/Pz8/tW3bVu+++67Onz9f5HRRd3d32Ww2p1N2DcPQggULbui9SzLv9Hbl+6hfv77Cw8P1ySefaP/+/U77efvttyVJffv2lSSdP3++yGmr3t7e5ulFhaewDho0SJI0e/bsIqcb3+gRSQBA6bVt21ZBQUFatmyZeUro5fLy8sy+UL9+fbVv315bt27Vjz/+aK6Tk5Ojd99996r7uP/++3Xw4EG9/PLLunjxou6///6rrmuz2TRt2jQ9+uijWrRokV577TWn5WXpH0OGDFFBQYHmzJlT7PLrXeIBlCeOEKLaGzBggN544w09/vjj6tu3rzIzM7V27VrzcRFXatOmjerWrauDBw+qU6dO5sNiCx+h8N133+mWW24pcrOTZ599Vp999pnGjh2rhx9+WI0aNdInn3yijIyMIvt4+umnlZeXpwEDBmj9+vVOywovIr+WwtMzf/zxRz355JNO47m5uTp69KgGDhzotI3dbtfMmTM1btw4DRgwQMOHD9ett96qX3/9VYcOHdKmTZv01ltvOR35LI6bm5siIiK0ZcsWeXt7m4G5cP+FQfvKQNi/f39t2LBBjzzyiIYMGaK8vDxt3rzZ6VmQJRUWFqb33ntPL730ku666y55enqqXbt2at68uaZOnaqYmBiNHDlSDz30kG655RZ98skn+uKLLxQVFWUe8d2xY4emTZumfv36qVWrVvLx8dGePXu0YsUKhYWFmcFw4MCB2rhxo1atWqUjR46od+/euummm3T48GF98cUXWrt27Q3XDwC4cTabTbNmzdIjjzyi++67T8OHD1fr1q118eJFHTlyRJs2bdLvf/9782Y0kydPVkxMjB588EGNHDnSfOzElc+kvdx9992n2bNna82aNWratKnZM67lD3/4gzw9Pc3n3b7wwguSytY/BgwYoGHDhum9997T3r171atXL9188836+eef9e233+rIkSPasmXLDX6CQOkQCFHtjRkzRoZhaMWKFXr11Vd1yy23aODAgRo+fLjuueeeIuu7ubmpU6dO2rhxY5FQ06VLF3333XdFxqVLp6f861//0syZM/Xee+/Jy8tLPXr00KxZs4qc2lJ4V8vXX3+9yDxNmza9biDs1KmT3N3dlZ+f71RLQECA/P39lZ6eXmyNPXr00IoVK/T2229rzZo1OnPmjG666Sa1aNFCjz76qNM1f9fSpUsXbdmyReHh4U7PDuzSpYsWLVokf3//Ihe633vvvcrKytK7776rmTNnqk6dOurVq5eee+6564bQK0VFRSklJUXr1q3T+vXrVVBQoNdee03NmzfXHXfcoWXLlmnevHlaunSpHA6HmjdvrkmTJmn06NHmHMHBwerbt6927typpKQkFRQUqHHjxnryySed1pOkN954QxEREVqxYoXmz58vNzc3NWvWTAMGDLihugEAZdOmTRutXLlSf/vb37R161YtW7ZMPj4+atq0qYYOHeoU4MLDw5WYmKg33nhDb7/9tnx9fTVgwAA9+OCD5tG7K/n6+mrgwIH68MMPNXz48BKfwTNp0iR5eHhowYIFys3N1YsvviibzVam/vHaa68pMjJSH3zwgf72t78pNzdXt9xyi9q2bavnnnuuZB8YUA5sBudEAQAAwCJefPFFffDBB9q6dasaNWpU4ftLTk7Wo48+qlmzZl31BjaAK3ENIQAAACzh/PnzWrNmjXr27FkpYVCS0tPTJV267hGoijhlFAAAADXa/v379d///lerVq2Sw+Fwuj6/opw6dUqbNm3SP/7xD/n4+Kh9+/YVvk+gNDhCCAAAgBptw4YNev7553Xo0CFNnz5d4eHhFb7PgwcP6rXXXpPdbtfChQud7gwOVCVcQwgAAAAAFlXjTxktKChQVlaWPD09b/hZcACA6sMwDOXm5srHx0dubpwAcz30RwCwjmv1yBofCLOyspweYA0AqNmCgoLk5+fn6jKqPPojAFhPcT2yxgdCT09PSZfe/OXPUwMA1Cw5OTnav3+/+b2Pa6M/AoB1XKtH1vhAWHgajJeXl7y9vV1cDQCgonH6Y8nQHwHAeorrkVxkAQAAAAAWRSAEAAAAAIsiEAIAAACARdX4awgBoCbKzc3V8ePHdfHiRVeXUunc3d1Vt25dNWjQgMdLAACcFBQU6NSpUzp79qzy8/NdXU6lq1Wrlpo1a3ZDN1gjEAJANXT8+HH5+fmpZcuWlrqJSuFzlNLT03X8+HG1aNHC1SUBAKqQ48ePy2azqWXLlpZ7zqphGDp9+rSOHz+uVq1alXg7floFgGro4sWLql+/vqUanXTp7mheXl5q2rSpsrKyXF0OAKCKycrKUtOmTeXl5WXJHlm/fv0bPnuIQAgA1ZTVGt3lOFUUAHA1Vu4Rpfl/A+t+WgCAGzZ58mTNnTv3qsvDw8N17NixIuvu2rVL/fv3r5QaAQBwheraIwmEAFBD9O7dW+3atVN4eLi6du2qP/zhD9c9rbJ379766quvyq2G3bt3q3nz5kXGIyIitGHDhgrbLwAA10KPvDoCIQDUIAsXLtTu3bu1cuVK/fDDD1qwYIGrSwIAoEqgRxaPQAgANZC/v7969OihtLQ0bdmyRffee68iIiIUExOjgwcPSpLi4uL0008/aezYsQoPD9eiRYskSc8884y6deumDh06aOTIkUpLS3Oa+8yZMxo1apTCw8P18MMP68SJE+ay4OBgHTlypEg9O3bsUM+ePa+63yeeeEJLlixx2mbQoEHavHlzuX4uAADQI50RCAGgBjp58qQ+++wz+fj46LnnntOUKVOUnJysnj17auzYscrJydHs2bPVpEkT8xfTxx9/XJLUs2dPbdiwQcnJyWrbtq0mTZrkNHdSUpKefvpp7dixQyEhIUWWX09x+x0yZIjWrFljrpOamqpffvnFbJAAAJQXeqQzAiEA1CDjxo1TRESEHnroIXXs2FEBAQG666671K1bN3l6emrMmDG6ePGidu/efdU5RowYIV9fX3l5eSk2Nlapqak6f/68ufw3v/mNOnbsKC8vL02cOFHffvutTp48Waa6+/TpoyNHjujw4cOSpNWrV2vgwIHy8vIq07wAABSiRxaPB9MDQA0yf/58de3a1Xw9ffp0NWnSxHzt5uamxo0bKz09vdjt8/PzNXfuXK1fv14ZGRnmrbvPnDkjPz8/SVKjRo3M9X18fFSnTh398ssvaty4canr9vLy0oABA7RmzRqNHz9ea9eu1bx580o9HypfpiNbObn5ri4DNZSXp7t87d6uLgPVHD2yeARCAKjBGjZsqP3795uvDcPQyZMn5e/vX+z6SUlJ2rJlixITE9WsWTOdP39eHTt2lGEY5jo///yz+e9ZWVk6d+6cGjZsWOZahw4dqvj4eHXo0EG1a9dWeHh4medE5cnJzdfij3a6ugzUUGOGdXJ1CaiB6JGXcMooANRgAwcO1LZt25ScnKzc3Fz9/e9/l5eXl9lIGjRoYD4TSbrUvLy8vHTzzTfrwoULmjNnTpE5t23bpl27diknJ0dvvvmmwsLCbviXzyv3K116PpObm5tef/113XfffaV4twAAlBw98hICIQDUYLfddptmz56tl19+WZ07d9Ynn3yihQsXmtcdPPHEE1qwYIEiIiK0ePFiDRkyRE2aNFGPHj107733qn379kXmjIqK0vz58xUZGam9e/dq9uzZN1zXlfstNHjwYO3fv1+DBw8u9XsGAKAk6JGX2IzLj3HWQNnZ2dqzZ49CQ0Pl7c255wBqhpSUFLVp08bVZZS7VatWafny5Vq6dOl1173yM+D7/saU9+eVcc7BKaOoMGOGdVK9OnZXl4FqoKb2R6nkPbK4z+Ba3/kcIQQAVAkXLlzQ+++/rwceeMDVpQAAUKVUZI8kEAIAXO7zzz9Xly5dVL9+fUVFRbm6HAAAqoyK7pHcZRQA4HI9evTQt99+6+oyAACociq6R3KEEAAAAAAsikAIAAAAABZVaYFw0qRJ6t69u+688071799f//73v81lycnJGjBggMLCwhQTE6MTJ06YywzD0OzZsxUZGanIyEjNmjVLNfzGqAAAAABQKSotED755JPaunWr/vOf/+ivf/2r/vKXv2jPnj3KyMjQ+PHjNWHCBO3cuVOhoaGaOHGiud3y5cu1efNmrV69WmvWrNGnn36qZcuWVVbZAAAAAFBjVVogDAwMNB/yaLPZZLPZdPToUW3atEmBgYEaOHCgvL29FRsbq9TUVB08eFDSpedtjB49Wo0aNZK/v79GjRqllStXVlbZAAAAAFBjVepdRl988UWtXLlSFy9eVNu2bXXXXXdp7ty5Cg4ONtex2+1q0aKFDhw4oICAAKWlpSkkJMRcHhISorS0tMosGwBqhExHtnJy88t9Xi9Pd/naS/Zg8x9//FGTJ0/W2bNnVbduXc2cOVMtW7Ys95oAALgRru6RruyPlR4Ip02bpt27d2vnzp3y8vKSw+FQvXr1nNbz9fVVVlaWJMnhcMjX19dc5ufnJ4fDIcMwZLPZSrzvPXv2lM+bAIAqwMPDw/yeLKmLOYbe+XB7udfy2PDOshl5JVr3hRde0PDhw3Xvvfdq3bp1mjp1qt5+++1S7TcnJ0fffPNNqbbF/1de/dG/ya06d+5sucwFXMnhcOjHAymuLgPVQGn6o+T6HunK/ljpzyF0d3dXRESE1qxZo6VLl8putyszM9NpnaysLPn4+Ei6dMTw8j/UzMxM2e32GwqDkhQaGipv75L9gg0AVV1KSor5PVlS2XkOubuX/9e+m5ubfHzs113v9OnT2rdvn4YPHy53d3cNHz5cs2bNUnZ2dpEfBkvCy8tLYWFh5uvs7Gx+/CuF8uqPGeccqlOnbtkLAopht9vVoUMHV5eBaqA0/VFybY+s6P4oXbtHuuyxE/n5+Tp69KgCAwOVmppqjjscDh09elStW7eWpCLLU1NTFRgYWOn1AgDK5uTJk/L395e7u7ukSz8QNmzYUCdPnnRxZQAAuI6r+2OlBMLTp09r3bp1ysrKUn5+vj7//HOtW7dOnTt3Vt++fZWWlqYNGzYoOztb8+fPV3BwsAICAiRJgwcPVmJiotLT05Wenq7ExEQNHTq0MsoGAAAAgBqtUk4ZtdlsWrp0qaZPn66CggI1bdpUU6ZMUZ8+fSRJCQkJmjFjhuLi4hQWFqY5c+aY20ZHR+vYsWMaNGiQJGnEiBGKjo6ujLIBAOWocePGSk9PV35+vtzd3ZWfn69ffvlFjRs3dnVpAAC4jKv7Y6UEwnr16um999676vKuXbtq/fr1xS6z2WyKj49XfHx8RZUHAKgE9evXV5s2bbR27VoNHjxYa9euVZs2bUp1fQQAADWFq/tjpd9UBgBgXS+++KImT56sv/71r7rppps0c+ZMV5cEAIDLubI/EggBwCK8PN01ZlinCpm3pAICAvTvf/+73GsAAKAsXN0jXdkfCYQAYBElfXg8AABWY+Ue6bLHTgAAAAAAXItACAAAAAAWRSAEAAAAAIsiEAIAAACARREIAQAAAMCiuMsoAFhE3oUsFeTllPu8bh5e8qjtc931Zs6cqQ0bNujEiRNKSkpSUFBQudcCAEBpWLlHEggBwCIK8nJ0dOOScp+3Rb8YSddvdnfffbd+97vfaeTIkeVeAwAAZWHlHkkgBABUioiICFeXAABAleTKHsk1hAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAKgUr7zyinr27Kmff/5Zo0aN0r333uvqkgAAqBJc2SO5yygAWISbh9f/3f66/OctiRdeeEEvvPBCue8fAICysnKPJBACgEVcejDu9Z+FBACA1Vi5R3LKKAAAAABYFIEQAAAAACyKQAgA1ZRhGK4uwWUKCgpcXQIAoIqyco8ozf8bEAgBoBqqVauWTp8+bblQaBiGcnJydOLECfn4WPNaDwDA1fn4+OjEiRPKycmxZI88ffq0atWqdUPbcVMZAKiGmjVrpuPHj+t///ufq0updB4eHqpTp44aNGjg6lIAAFVMs2bNdOrUKR05ckR5eXmuLqfS1apVS82aNbuhbQiEAFANeXp6qlWrVq4uAwCAKsXNzU0NGzZUw4YNXV1KtcEpowAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFVUogzMnJ0ZQpU9SrVy+Fh4dryJAh2rZtmyTp+PHjCg4OVnh4uPnP/PnzzW0Nw9Ds2bMVGRmpyMhIzZo1S4ZhVEbZAAAAAFCjeVTGTvLy8tS4cWMtWbJETZo00bZt2/Tss88qKSnJXOfrr7+Wh0fRcpYvX67Nmzdr9erVstlsGjVqlJo3b64HH3ywMkoHAAAAgBqrUo4Q2u12xcbGqlmzZnJzc1OvXr3UrFkz7d2797rbrlq1SqNHj1ajRo3k7++vUaNGaeXKlZVQNQAAAADUbJVyhPBKp06d0uHDh9W6dWtzrFevXrLZbOrWrZvi4uJUr149SVJaWppCQkLM9UJCQpSWllbpNQMAAABATVPpgTA3N1eTJk3S0KFDFRAQoKysLK1YsUJt2rTR2bNnNWPGDMXFxWnx4sWSJIfDIV9fX3N7Pz8/ORwOGYYhm81W4v3u2bOn3N8LAADVXXn1R/8mt+rcubPlMhdwJYfDoR8PpLi6DKBGqtRAWFBQoPj4eHl6emratGmSJB8fH91xxx2SpAYNGmjatGnq3r27MjMz5evrK7vdrqysLHOOzMxM2e32GwqDkhQaGipvb+/yezMAgColOzubH/9Kobz6Y8Y5h+rUqVv2goBi2O12dejQwdVlANXWtXpkpT12wjAMTZ06VadOnVJCQoI8PT2LXa8w6BXeSTQwMFCpqanm8tTUVAUGBlZ8wQAAAABQw1VaIJw+fboOHjyohQsXqlatWub4d999p0OHDqmgoEBnzpzRK6+8ok6dOsnPz0+SNHjwYCUmJio9PV3p6elKTEzU0KFDK6tsAAAAAKixKuWU0RMnTmj58uXy8vJS9+7dzfGXXnpJbm5umjNnjjIyMuTr66uuXbtqzpw55jrR0dE6duyYBg0aJEkaMWKEoqOjK6NsAAAAAKjRKiUQNm3aVPv27bvq8qioqKsus9lsio+PV3x8fEWUBgAAAACWVWmnjAIAAAAAqhYCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRlRIIc3JyNGXKFPXq1Uvh4eEaMmSItm3bZi5PTk7WgAEDFBYWppiYGJ04ccJcZhiGZs+ercjISEVGRmrWrFkyDKMyygYAAACAGq1SAmFeXp4aN26sJUuW6JtvvtGECRP07LPP6vjx48rIyND48eM1YcIE7dy5U6GhoZo4caK57fLly7V582atXr1aa9as0aeffqply5ZVRtkAAAAAUKNVSiC02+2KjY1Vs2bN5Obmpl69eqlZs2bau3evNm3apMDAQA0cOFDe3t6KjY1VamqqDh48KElatWqVRo8erUaNGsnf31+jRo3SypUrK6NsAAAAAKjRPFyx01OnTunw4cNq3bq1li5dquDgYHOZ3W5XixYtdODAAQUEBCgtLU0hISHm8pCQEKWlpd3wPvfs2VMutfs3bibZ3MtlLqAII1/pJ4+7ugoAFlJu/bHJrTp37my5zAVcyeFw6McDKa4uA6iRKj0Q5ubmatKkSRo6dKgCAgLkcDhUr149p3V8fX2VlZUl6dIXgK+vr7nMz89PDodDhmHIZrOVeL+hoaHy9vYuc/0Z5xxa/NHOMs8DFGfMsE7q0KGDq8sAqqXs7OxyCzdWUp79sU6dumUvCCiG3W6nPwJlcK0eWal3GS0oKFB8fLw8PT01bdo0SZf+A8/MzHRaLysrSz4+PubywnAoSZmZmbLb7TcUBgEAAAAARVVaIDQMQ1OnTtWpU6eUkJAgT09PSVJgYKBSU1PN9RwOh44eParWrVsXuzw1NVWBgYGVVTYAAAAA1FiVFginT5+ugwcPauHChapVq5Y53rdvX6WlpWnDhg3Kzs7W/PnzFRwcrICAAEnS4MGDlZiYqPT0dKWnpysxMVFDhw6trLIBAAAAoMaqlGsIT5w4oeXLl8vLy0vdu3c3x1966SXdd999SkhI0IwZMxQXF6ewsDDNmTPHXCc6OlrHjh3ToEGDJEkjRoxQdHR0ZZQNAAAAADVapQTCpk2bat++fVdd3rVrV61fv77YZTabTfHx8YqPj6+o8gAAAADAkir1pjIAAAAAgKqDQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAokocCBcvXlzseGJiYrkVAwAAbhw9GgBQWiUOhPPnzy92fMGCBeVWDAAAuHH0aABAaXlcb4Xk5GRJUkFBgbZv3y7DMMxlx48fl4+PT8VVBwAArooeDQAoq+sGwqlTp0qSsrOzNWXKFHPcZrPplltu0QsvvFBx1QEAgKuiRwMAyuq6gXDr1q2SpPj4eM2aNavCCwIAACVDjwYAlNV1A2GhyxtNQUGB0zI3N25WCgCAq9CjAQClVeJAuHfvXs2YMUP79u1Tdna2JMkwDNlsNqWkpFRYgQAA4Nro0QCA0ipxIJw8ebJ69eqlP/3pT6pVq1ZF1gQAAG4APRoAUFolDoQnTpzQxIkTZbPZKrIeAABwg+jRAIDSKvGFBX379tUXX3xRkbUAAIBSoEcDAEqrxEcIs7OzNX78eHXo0EENGjRwWsadzQAAcB16NACgtEocCFu3bq3WrVtXZC0AAKAU6NEAgNIqcSAcP358RdYBAABKiR4NACitEgfC5OTkqy7r0qVLuRQDAABuHD0aAFBaJQ6EU6dOdXp95swZ5ebmyt/fX1u2bCn3wgAAQMnQowEApVXiQLh161an1/n5+VqwYIF8fHzKvSgAAFBy9GgAQGmV+LETV3J3d9fYsWP1zjvvlGc9AACgjOjRAICSKnUglKQvv/ySh+ACAFAF0aMBACVR4lNG77rrLqfGcuHCBeXk5Gj69OkVUhgAACgZejQAoLRKHAhnz57t9Lp27dpq1aqVfH19y70oAABQcvRoAEBplTgQdurUSZJUUFCgU6dOqUGDBnJzK9MZpwAAoBzQowEApVXibpGZman4+Hi1a9dOPXv2VLt27fT888/r/PnzFVkfAAC4Dno0AKC0ShwIX3nlFV24cEFJSUn6/vvvlZSUpAsXLuiVV16pyPoAAMB10KMBAKVV4lNGP//8c23evFm1a9eWJLVq1Uqvvfaa+vbtW2HFAQCA66NHAwBKq8RHCL29vZWRkeE0dubMGXl5eZV7UQAAoOTo0QCA0irxEcIRI0Zo9OjRevTRR9WkSRP99NNPevfdd3X//fdXZH0AAOA66NEAgNIqcSB86qmn5O/vr6SkJP3yyy9q2LChHnvssRI3m/fee08fffSR9u/fr6ioKL3++uuSpOPHj+vuu++W3W43133sscc0btw4SZJhGPrzn/+sFStWSJKGDx+uuLg4HrYLAMD/KWuPBgBYV4kD4auvvqp77rlH7777rjn2n//8R6+++qqmTp163e0bNmyop59+Wp9//rmys7OLLP/666/l4VG0nOXLl2vz5s1avXq1bDabRo0apebNm+vBBx8saekAANRoZe3RAADrKvE1hGvXrlVoaKjTWGhoqNauXVui7fv166c+ffqobt26N1TgqlWrNHr0aDVq1Ej+/v4aNWqUVq5ceUNzAABQk5W1RwMArKvERwhtNpsKCgqcxvLz84uMlVavXr1ks9nUrVs3xcXFqV69epKktLQ0hYSEmOuFhIQoLS2tXPYJAEBNUNE9GgBQc5U4EEZEROjNN99UXFyc3NzcVFBQoISEBEVERJSpgJtvvlkrVqxQmzZtdPbsWc2YMUNxcXFavHixJMnhcMjX19dc38/PTw6HQ4Zh3NB1hHv27ClTnYX8m9yqc+fOlstcwJUcDod+PJDi6jIAVDNl6dH0R1QH9Eeg4pQ4EE6dOlVPPvmkunfvriZNmujkyZO65ZZbtHDhwjIV4OPjozvuuEOS1KBBA02bNk3du3dXZmamfH19ZbfblZWVZa6fmZkpu91+wzeVCQ0Nlbe3d5lqlaSMcw7VqVO3zPMAxbHb7erQoYOrywCqpezs7HILN9VNWXo0/RHVAf0RKJtr9cgSB8JGjRpp5cqV+v7773Xy5Ek1btxY7dq1k5tbiS9DLJHCoGcYhiQpMDBQqampateunSQpNTVVgYGB5bpPAACqs8rq0QCAmqfEgVCS3Nzc1L59e7Vv3/6Gd5SXl2dez5Cfn6/s7Gy5u7tr79698vPzU8uWLXXu3Dm98sor6tSpk/z8/CRJgwcPVmJiou666y5JUmJioh5++OEb3j8AADVZWXo0AMC6bigQlsWCBQv01ltvma/XrFmj8ePHq1WrVpozZ44yMjLk6+urrl27as6cOeZ60dHROnbsmAYNGiTp0sN3o6OjK6tsAAAAAKixKi0QxsbGKjY2tthlUVFRV93OZrMpPj5e8fHxFVUaAAAAAFgSFxcAAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACL8nB1AQCqvrwLWSrIy3F1Gaih3Dy85FHbx9VlAABgSQRCANdVkJejoxuXuLoM1FAt+sVIIhACAOAKnDIKAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUZUWCN977z0NGzZMoaGhmjx5stOy5ORkDRgwQGFhYYqJidGJEyfMZYZhaPbs2YqMjFRkZKRmzZolwzAqq2wAAAAAqLEqLRA2bNhQTz/9tIYPH+40npGRofHjx2vChAnauXOnQkNDNXHiRHP58uXLtXnzZq1evVpr1qzRp59+qmXLllVW2QAAAABQY1VaIOzXr5/69OmjunXrOo1v2rRJgYGBGjhwoLy9vRUbG6vU1FQdPHhQkrRq1SqNHj1ajRo1kr+/v0aNGqWVK1dWVtkAAAAAUGO5/BrCtLQ0BQcHm6/tdrtatGihAwcOmMtDQkLM5SEhIUpLS6v0OgEAAACgpvFwdQEOh0P16tVzGvP19VVWVpa53NfX11zm5+cnh8MhwzBks9lKvJ89e/aUS73+TW7VuXNny2Uu4EoOh0M/HkhxdRlFBDRrpHPnzrm6DNRQDodDP+w/5OoyLIv+iOqgqvZHoCZweSC02+3KzMx0GsvKypKPj4+5vDAcSlJmZqbsdvsNhUFJCg0Nlbe3d5nrzTjnUJ06dcs8D1Acu92uDh06uLqMInLOn1GdOnVcXQZqqPL6e5+dnV1u4cZK6I+oDqpqfwSqi2v1SJefMhoYGKjU1FTztcPh0NGjR9W6detil6empiowMLDS6wQAAACAmqbSAmFeXp6ys7NVUFCg/Px8ZWdnKy8vT3379lVaWpo2bNig7OxszZ8/X8HBwQoICJAkDR48WImJiUpPT1d6eroSExM1dOjQyiobAAAAAGqsSjtldMGCBXrrrbfM12vWrNH48eMVGxurhIQEzZgxQ3FxcQoLC9OcOXPM9aKjo3Xs2DENGjRIkjRixAhFR0dXVtkAAAAAUGNVWiCMjY1VbGxsscu6du2q9evXF7vMZrMpPj5e8fHxFVkeAAAAAFiOy68hBAAAAAC4BoEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIQAAAABYFIEQAAAAACyKQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsKgqEwhjYmJ0xx13KDw8XOHh4erfv7+5LDk5WQMGDFBYWJhiYmJ04sQJF1YKAAAAADVDlQmEkvTHP/5Ru3fv1u7du7VhwwZJUkZGhsaPH68JEyZo586dCg0N1cSJE11cKQAAAABUf1UqEBZn06ZNCgwM1MCBA+Xt7a3Y2Filpqbq4MGDri4NAAAAAKq1KhUI33jjDUVGRio6Olo7duyQJKWlpSk4ONhcx263q0WLFjpw4ICrygQAAACAGsHD1QUUmjRpkgICAuTl5aV169Zp7NixWr16tRwOh+rVq+e0rq+vr7Kysm5o/j179pRLnf5NbtW5c2fLZS7gSg6HQz8eSHF1GUUENGukc+fOuboM1FAOh0M/7D/k6jIsi/6I6qCq9kegJqgygTAsLMz896FDh2rt2rXatm2b7Ha7MjMzndbNysqSj4/PDc0fGhoqb2/vMteZcc6hOnXqlnkeoDh2u10dOnRwdRlF5Jw/ozp16ri6DNRQ5fX3Pjs7u9zCjZXQH1EdVNX+CFQX1+qRVeqU0cvZbDYZhqHAwEClpqaa4w6HQ0ePHlXr1q1dWB0AAAAAVH9VIhD++uuv+vzzz5Wdna28vDytWbNGu3btUvfu3dW3b1+lpaVpw4YNys7O1vz58xUcHKyAgABXlw0AAAAA1VqVOGU0Ly9Pf/nLX3To0CG5u7vrtttu0/z583XbbbdJkhISEjRjxgzFxcUpLCxMc+bMcXHFAAAAAFD9VYlAWK9ePX344YdXXd61a1etX7++EisCAAAAgJqvSpwyCgAAAACofARCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBFEQgBAAAAwKIIhAAAAABgUQRCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABbl4eoCAAAAgOoo70KWCvJyXF0GajA3Dy951Pap0H0QCAEAAIBSKMjL0dGNS1xdBmqwFv1iJFVsIOSUUQAAAACwKAIhAAAAAFgUgRAAAAAALIpACAAAAAAWRSAEAAAAAIsiEAIAAACARREIAQAAAMCiCIQAAAAAYFHVIhCePXtW48aNU/v27dWrVy8lJSW5uiQAAAAAqPY8XF1AScyYMUOenp768ssvlZKSoieffFIhISEKDAx0dWkAAAAAUG1V+SOEDodDGzdu1IQJE+Tj46OIiAj17t1bq1evdnVpAAAAAFCtVfkjhIcPH5abm5tatWpljoWEhOjrr78u0faGYUiScnJyyqWe3Nwc1fK0lctcwJVyc3OUne3u6jKKyM3NVYGHt6vLQA2Vk5srIzu77PP83/d84fc+ro3+iOqE/girqoweWeUDocPhkJ+fn9OYn5+fsrKySrR9bm6uJGn//v3lVlPXNr7lNhdwueNHDuq4q4u4mmYRrq4ANdS+H49JOlZu8+Xm5qpWrVrlNl9NRX9EdUJ/hFVVRo+s8oHQbrcrMzPTaSwzM1M+Pj4l2t7Hx0dBQUHy9PSUzcYvlwBQUxmGodzc3BL3B6ujPwKAdVyrR1b5QNiyZUvl5+fr8OHDatmypSQpNTVVrVu3LtH2bm5uRY4wAgBqJo4Mlhz9EQCs5Wo9ssrfVMZut6tv376aN2+eHA6HvvnmG23ZskWDBw92dWkAAAAAUK3ZjGpw9f3Zs2c1ZcoUffXVV6pbt66ee+45DRo0yNVlAQAAAEC1Vi0CIQAAAACg/FX5U0YBAAAAABWDQAgAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEqBBnz57VuHHj1L59e/Xq1UtJSUmuLgmoUO+9956GDRum0NBQTZ482dXlAKii6I+wInpk1ebh6gJQM82YMUOenp768ssvlZKSoieffFIhISEKDAx0dWlAhWjYsKGefvppff7558rOznZ1OQCqKPojrIgeWbVxhBDlzuFwaOPGjZowYYJ8fHwUERGh3r17a/Xq1a4uDagw/fr1U58+fVS3bl1XlwKgiqI/wqrokVUbgRDl7vDhw3Jzc1OrVq3MsZCQEB04cMCFVQEA4Fr0RwBVEYEQ5c7hcMjPz89pzM/PT1lZWS6qCAAA16M/AqiKCIQod3a7XZmZmU5jmZmZ8vHxcVFFAAC4Hv0RQFVEIES5a9mypfLz83X48GFzLDU1Va1bt3ZdUQAAuBj9EUBVRCBEubPb7erbt6/mzZsnh8Ohb775Rlu2bNHgwYNdXRpQYfLy8pSdna2CggLl5+crOztbeXl5ri4LQBVCf4RV0SOrNpthGIari0DNc/bsWU2ZMkVfffWV6tatq+eee06DBg1ydVlAhUlISNBbb73lNDZ+/HjFxsa6qCIAVRH9EVZEj6zaCIQAAAAAYFGcMgoAAAAAFkUgBAAAAACLIhACAAAAgEURCAEAAADAogiEAAAAAGBRBEIAAAAAsCgCIVDDTJ48WXPnzr3q8vDwcB07dqzIurt27VL//v0rpUYAAFyBHgkURSAEKlHv3r3Vrl07hYeHq2vXrvrDH/6grKys627z1VdflVsNu3fvVvPmzYuMR0REaMOGDRW2XwAAroUeCbgGgRCoZAsXLtTu3bu1cuVK/fDDD1qwYIGrSwIAoEqgRwKVj0AIuIi/v7969OihtLQ0bdmyRffee68iIiIUExOjgwcPSpLi4uL0008/aezYsQoPD9eiRYskSc8884y6deumDh06aOTIkUpLS3Oa+8yZMxo1apTCw8P18MMP68SJE+ay4OBgHTlypEg9O3bsUM+ePa+63yeeeEJLlixx2mbQoEHavHlzuX4uAADQI4HKQyAEXOTkyZP67LPP5OPjo+eee05TpkxRcnKyevbsqbFjxyonJ0ezZ89WkyZNzF9MH3/8cUlSz549tWHDBiUnJ6tt27aaNGmS09xJSUl6+umntWPHDoWEhBRZfj3F7XfIkCFas2aNuU5qaqp++eUXs0ECAFBe6JFA5SEQApVs3LhxioiI0EMPPaSOHTsqICBAd911l7p16yZPT0+NGTNGFy9e1O7du686x4gRI+Tr6ysvLy/FxsYqNTVV58+fN5f/5je/UceOHeXl5aWJEyfq22+/1cmTJ8tUd58+fXTkyBEdPnxYkrR69WoNHDhQXl5eZZoXAIBC9Eig8nm4ugDAaubPn6+uXbuar6dPn64mTZqYr93c3NS4cWOlp6cXu31+fr7mzp2r9evXKyMjQ25ul37XOXPmjPz8/CRJjRo1Mtf38fFRnTp19Msvv6hx48alrtvLy0sDBgzQmjVrNH78eK1du1bz5s0r9XwAAFyJHglUPo4QAi7WsGFD/fTTT+ZrwzB08uRJ+fv7F7t+UlKStmzZosTERH3zzTfaunWruV2hn3/+2fz3rKwsnTt3Tg0bNixzrUOHDlVSUpKSk5NVu3ZthYeHl3lOAACuhh4JVDwCIeBiAwcO1LZt25ScnKzc3Fz9/e9/l5eXl9lIGjRoYD4TSbrUvLy8vHTzzTfrwoULmjNnTpE5t23bpl27diknJ0dvvvmmwsLCbviXzyv3K116PpObm5tef/113XfffaV4twAAlBw9Eqh4BELAxW677TbNnj1bL7/8sjp37qxPPvlECxcuNK87eOKJJ7RgwQJFRERo8eLFGjJkiJo0aaIePXro3nvvVfv27YvMGRUVpfnz5ysyMlJ79+7V7Nmzb7iuK/dbaPDgwdq/f78GDx5c6vcMAEBJ0COBimczLj+GDgDXsWrVKi1fvlxLly51dSkAAFQp9EhURxwhBFBiFy5c0Pvvv68HHnjA1aUAAFCl0CNRXREIAZTI559/ri5duqh+/fqKiopydTkAAFQZ9EhUZ5wyCgAAAAAWxRFCAAAAALAoAiEAAAAAWBSBEAAAAAAsikAIAAAAABZFIAQAAAAAiyIQAgAAAIBF/T/vHnwYyN8NcQAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 1080x432 with 2 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"x.visualize(y_test, predictions, 'Potability')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 11,
|
||
"metadata": {
|
||
"id": "aw8Tefprhjnn"
|
||
},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEUCAYAAABkhkJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1R0lEQVR4nO3dfVhUZd4H8O/MMIAICooYpG7phlGkIiIqaoIaaIhvmO4K7qpXrpapu1nilVmoa+JVuqWmuVu6tPaylqLmS1oatlk8wsOjcKmh5jsoKqMiIDPO3M8fLhMv83JmmGHOwPdzXV4yc+5zn9855/7N75wzL0chhBAgIiJyMaWrAyAiIgJYkIiISCZYkIiISBZYkIiISBZYkIiISBZYkIiISBZYkIioxUhNTcXWrVuNj1evXo3o6GjExMS4MCqqwYLk5nJycjB48OAGz9dPPKLmJDc3F5MmTUJkZCT69u2LSZMm4fjx4zb1UVJSgk2bNmHPnj344YcfrLZPS0vD6tWr7Q2ZJPBwdQBERLa4e/cuZs6ciTfffBMjRoyATqdDbm4uPD09bernypUr8Pf3R/v27Z0UKdmKZ0huIi4uDh988AFGjhyJqKgoLFy4ENXV1a4Oi6jJnTt3DgCQmJgIlUoFb29vDBw4EI8//jjWrFmD+fPnG9tevnwZ3bt3x/379+v0ceTIEUybNg2lpaWIiIhAWloaAGDOnDmIiYlBZGQkJk+ejNOnTwMAPv/8c+zatQsffvghIiIiMHPmTADAtWvX8NJLL6Ffv36Ii4tDZmZmU2yCZosFyY3UJMSBAwdw7tw5vP/++64OiajJPfroo1CpVFiwYAGys7Nx+/Ztm/sYMGAA/v73vyMoKAj5+flYsWIFAGDw4MH4+uuv8eOPP+KJJ54wFreJEydi1KhRmD59OvLz87FhwwYYDAbMmjUL3bt3x+HDh/HPf/4T//znP/H99987dH1bEhYkNzJ58mQEBwfD398fs2bNwu7duwEApaWl6NOnT51/eXl5Lo6WyDl8fX3xySefQKFQ4PXXX0f//v0xc+ZM3Lhxo9F9Jycnw9fXF56ennjppZdw6tQplJeXm2xbUFCAsrIyzJ49G56enujcuTOee+457Nmzp9FxtFR8D8mNBAcHG/8OCQlBaWkpACAoKAiHDx+u0zY1NbVJYyNqSt26dTOe1Zw9exavvPIKli9fjkcffdTuPvV6PVavXo19+/ahrKwMSuWD43WNRgM/P78G7a9cuWI8GKzdR+3HZBsWJDdSUlJi/Lu4uBhBQUEujIZIHrp164Zx48bh888/xxNPPIF79+4Zp9ly1rRr1y58++232LRpEzp16oTy8nJERUWh5oYICoWiTvvg4GB06tQJ+/fvd8yKEC/ZuZNPPvkEV69exa1bt4wfcCBqac6ePYuPPvoIV69eBfDgQO2rr75Cz549ERYWhqNHj6K4uBjl5eX44IMPJPdbUVEBT09PBAQEoKqqCqtWraozvX379rh8+bLxcY8ePeDr64uNGzfi3r170Ov1KCoqsvnj5/QrFiQ3kpiYiGnTpmHYsGHo3LkzZs2a5eqQiJqcr68vjh07hgkTJqBXr1547rnnEBoairS0NMTExGDkyJFISkrCuHHjEBsbK7nfMWPGICQkBIMGDcKzzz6LXr161ZmenJyMM2fOoE+fPnjhhRegUqmwfv16nDp1CkOHDkW/fv2waNEi3L1718Fr3HIoeIM+9xAXF4dly5ZhwIABrg6FiMgpeIZERESywIJERESywEt2REQkC1bPkDIyMhAXF4fu3bujqKioKWIialaYQ0TSWP0e0tChQzFlyhRMnjzZ5s4NBgMqKiqgVqsbfIafyJ0IIaDT6dC6dWvjFyalsjeHmD/UXEjNH6sFqTHfOq6oqOARITUroaGhJr+1b4m9OcT8oebGWv449Zca1Gq1MQhbfxreEQoLCxEeHm7XvK+u/R5lt++ZnNaurTcAmJzerq03Vs4eZHF+hVIBYbD+1t0/XhtuQ8QPWFpu/Rht7aP2fI3ZtvYsr7EaG69Wq0VRUZFxTDcFc/ljaXsBlselI0gZY7ZwZGzO4sjxbgtbc0NqnPaMIVPMvZbVj09q/ji1INVcZnDlUV5hYaFd8/1SXGF22q0Ky9MKCwstzi+VPbFLWW5NjLb2UX8+e7etvctrLEf01ZSXzszlj6XtZY4jt6UjxnZtjt7PzuKKGO3JDSlx2jOGbGEuPmv50yS/ZRceHg4vL6+mWFQdeXl5iIyMtGveDntv4rqmyvS0gFYAYHJ6h4BWiIyMtDi/UqmAQcIZkj2xW1pu/Rht7aP2fI3ZtvYsr7EaG291dbXLXjTr54+l7QVYHpeOIGWM2dSfA2NzFkeOd1vYmhtS47RnDJli7rWsfnxS84ffQzJjyogwqJQNq7mHSoEpI8IwZUQYvNSqOtO81CpMGRFmnN9D1XB+lVKBhOguDeatr+dv7buLpbm4TcVoqQ9L6+ZoTb08d2dpezXFtjS1DHup/5tPZJqz9qe1MWTqtas+L7XK5GtZY+Kzeoa0bNky7N+/Hzdu3MDUqVPh7+9vvA9PczYksjMAYGNWAcordQAAPx81Zox5yjgNADL3nsQNTRUCA1phyogw4zRr84c92t44r1IJ6A2/Lrvnb9tj2ayBDotboQCEeHDUUjtGa32YWzdHa+rlNTVH55CU7fWPrGO4U6l3yrY0tfyox4Nw9FQpbmiq4Ovz4H2Cu5U6q9MGPe7dbPazMzgrN6T0W/s1pEbNGVHt15Lar2WNjc+pX4ytOU1zx0t2ruBO8bpTrIDjLtk15VhuzDLdZf8wTseSa5xSxzIv2RERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSywIBERkSxIKkjnzp3DxIkTER8fj4kTJ+L8+fNODouo+WD+EEnjIaXRG2+8gd///vcYPXo0duzYgcWLFyMzM7NRC/4u7xIy957EDU0VfH3UAIC7lToEBrTClBFhGBLZ2er8G7MKUF6pMz6nUABCAH4+aujuG3BPqwc+udyoOJucG8Tr56PG8J6++PCbb3CptML4vALAiP6/wdFTpbihqZK8L2vUHhOW5pXaTipH91efM/LHXZnKW3xyGWoPJXT3DcYcliUZ52bnoNa/5uJ/4/TzUWPGmKcwJLKzcYxf11RBqVTAYBDo4ISx3lhWz5Bu3ryJEydOIDExEQCQmJiIEydOoKyszO6Ffpd3CWu3HsN1TRUEgPJKHcordRAArmuqsHbrMXyXd8ni/O9+nl93UOPXgVxeqXtQjMgpyit12Pajpk4xAgABYM+PF4z7Vcq+rFF/TJibV2o7qRzdX33OyB939V3eJfzts4Z5CwC6+wYAMi5GMlc/F4EHefq3z/Kx/ov/M45xADAYHmxkR491R7BakEpKStCxY0eoVCoAgEqlQlBQEEpKSuxeaObek6jWmS8Y1To9MveetDj/fT1Hrjuwti9rmBoTpuaV2k4qR/dXnzPyx11l7j0JvYF525T0BoF9ORfNvt46cqw7gqRLdo1VWFhY53FNpbbkuqYKeXl5ZqeR+7C0L2u3kTKv1HammJremP6aSv38kUou8ddg3rqGwcpBgJzGutWCFBwcjGvXrkGv10OlUkGv16O0tBTBwcFWOxf/Pf8ODQ2Fp6en8fmuIRqU3b5ncd52bb0RHh5ucpqU+Uk+LO3LGub2af15pbarr7Cw0OR0qf1ptVoUFRUZx7RUzsgfKcytrysxb11DoVRAWChKUvKzsaTmj0JIyLDU1FQkJycb35T94osv8PHHH1sNory8HEVFRdKjJpK50NBQ+Pn52TQP84foAWv5I6kgnT17Fmlpabhz5w7atGmDjIwMdO3a1erCDQYDKioqoFaroVAobIucSEaEENDpdGjdujWUStu+vsf8oZZOav5IKkhERETOxl9qICIiWWBBIiIiWWBBIiIiWWBBIiIiWWBBIiIiWWBBIiIiWWBBIiIiWWj2BSk9PR0JCQlISkrCpEmTUFBQ4OqQGnCn++VoNBo8//zziI+Px6hRozB79my3+OXqtWvXonv37i3ylw9ycnIQFhaGf/3rX64OxSQ556i75Ka75mUDopk7ePCg0Gq1xr+HDh3q4ogaSk1NFVlZWUIIIbKyskRqaqqLIzJPo9GIn376yfh4xYoVYuHChS6MyLrCwkIxffp0MWTIEPHzzz+7OpwmVV5eLpKTk8WMGTPExx9/7OpwTJJzjrpLbrpjXprS7M+QYmNjoVY/uAFgr169cPXqVRgMBhdH9St3u1+Ov78/oqOjjY979eqF4uJiF0ZkmVarxZIlS/DGG2+0yJ/fWbFiBaZPn46AgABXh2KWXHPUnXLT3fLSnGZfkGrbsmULhgwZYvNvkTmTO98vx2Aw4NNPP0VcXJyrQzHr3XffRVJSEjp3ls9dMZtKdnY27ty5g4SEBFeHIpmcctRdc9Md8tKcJrkfkjONHTvW7JHAkSNHjINp9+7d2LVrF7Zs2dKU4TVrS5cuhY+PD1JSUlwdikn5+fkoKCjA/PnzXR2KU1ga+/v27cM777yDTZs2NXFUDTFHm5bc89ISty9I27dvt9rmwIEDWL16NTZv3ozAwMAmiEq6xtwvx5UyMjJw4cIFbNiwQRZHs6YcPXoUv/zyC4YOHQoAuHr1KqZPn4633noLAwcOdHF0jWdp7Ofm5uL69euYMGECgAdveh86dAi3bt3C7NmzmypEAO6bo+6Ym+6Qlxa5+k0sZzt48KCIjY0V58+fd3UoZqWkpNR54zQlJcXFEVm2atUqkZKSIiorK10dik1iY2Nb3IcaaixYsEDWH2qQa466U266a17W1uxvP9GvXz+o1Wq0a9fO+NzmzZtl9SavvffLcYXTp08jMTERjzzyCLy9vQEAnTp1wrp161wcmXVxcXHYsGEDQkNDXR1Kk0tLS0N4eLgsL+PIOUfdJTfdOS9ra/YFiYiI3IMbXmQkIqLmiAWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQWJiIhkgQXJTW3btg2/+93vXB0GkVuIiIjApUuXXLb8nJwcDB482GXLdxcsSE4SFxeHI0eO1HmORYRaim3btmHUqFHo2bMnYmJi8MYbb+DOnTsuiyc/Px+dO3d22fJJGhYkN3D//n1Xh0Ak2UcffYS3334br7zyCnJzc/H555+juLgYU6dOhVarNTlPcx7jzXndHI0FyUU2btyIYcOGISIiAiNHjsSBAweM07Zt24ZJkyZh+fLl6Nu3L9asWQONRoOZM2eid+/eSE5OxsWLF+v01717d3z66ad45plnEBUVhfT0dNS+GfAXX3yBESNGICoqCtOnT8eVK1cAAEIILF++HP3790dkZCRGjRqFoqIiAEB2djZGjhyJiIgIDBo0CB9++GETbBlyZ3fv3sWaNWuwaNEiDB48GGq1Gp06dcLf/vY3FBcXY+fOnQCANWvWYM6cOZg/fz569+6N7du349KlS5g8eTIiIiLwxz/+Eenp6Zg/f76x7zlz5iAmJgaRkZGYPHkyTp8+bZyWlpaG9PR0zJgxAxEREZgwYUKdHOnevTsuXLgAALh37x5WrFiB2NhYREZG4ne/+x3u3btncn2++eYbjB49Gr1798awYcNw+PBhAMCXX36JESNGICIiAkOHDsVnn31mnKfm8tzGjRsRExODhQsXGqdt2LAB0dHRiIuLM24LACgvL8err76Kfv36ITY2Fu+//z4MBgOAX6+sZGRkICoqCnFxccjOzrZ7H8maIKeIjY0VP/zwQ53nvvzySzFp0iQhhBB79uwRV69eFXq9XuzevVv07NlTXLt2zdguLCxMZGZmCp1OJ6qqqsS8efPEnDlzREVFhfj555/FwIEDjX0JIURoaKiYMWOGuH37trhy5YqIjo4W2dnZQgghDhw4IIYNGybOnDkjdDqdWLdunZg4caIQQojDhw+LsWPHitu3bwuDwSDOnDljjCMmJkYcPXpUCCHErVu3RGFhoXM3Grm97OxsERYWJnQ6XYNpr776qvjzn/8shBDivffeE0888YQ4cOCA0Ov1oqqqSjz33HNixYoVorq6Whw9elRERESIl19+2Tj/1q1bRXl5uaiurhbLli0TSUlJxmkLFiwQUVFR4tixY0Kn04m//OUvYt68ecbpoaGh4vz580IIId58802RkpIirl69Ku7fvy/y8vJEdXV1g3iPHTsmevfuLf7zn/8IvV4vrl69Ks6cOSOEEOLQoUPiwoULwmAwiJycHNGjRw9jfvz0008iLCxMrFy5UlRXV4uqqirjc8uXLxfV1dUiJydH9OzZU5w9e1YIIcQrr7wiZs6cKcrLy8WlS5fEM888I/79738LIR68HjzxxBPi888/F/fv3xdbtmwRMTExwmAwNGpfyRHPkJzoxRdfRJ8+fYz/0tPTjdNGjBiBjh07QqlUYuTIkfjNb36D48ePG6cHBQUhNTUVHh4eUKvV2L9/P+bMmQMfHx+EhoZi7NixDZb3/PPPo02bNggJCUF0dDROnToFAPjss88wY8YMdOvWDR4eHpg5cyZOnjyJK1euwMPDAxUVFfjll18ghEC3bt0QFBQEAPDw8MCZM2dw9+5dtG3bFk8++aSTtxi5O41Gg4CAAHh4eDSY1qFDB2g0GuPjXr16YdiwYVAqlSgrK0NBQQHmzJkDT09P9OnTB3FxcXXmT05Ohq+vLzw9PfHSSy/h1KlTKC8vN04fPnw4evToAQ8PDyQlJeHkyZMNYjAYDPjyyy/x2muvoWPHjlCpVOjduzc8PT0btP3iiy8wfvx4xMTEQKlUomPHjujWrRsAYMiQIejSpQsUCgX69u2LmJgY5ObmGudVKpXGdfH29jY+P3fuXHh6eqJv3754+umnsXfvXuj1euzZswcvv/wyfH190alTJ0ydOrXOGVRISAiee+45qFQqjB07FtevX8eNGzek7BK30nDUkMOsW7cOAwYMMD7etm0btm7dCgDIysrCpk2bjJfOKisr6yTrQw89ZPy7rKwM9+/fR3BwsPG5kJCQBsvr0KGD8e9WrVqhoqICAFBcXIzly5cjIyPDOF0IgWvXrqF///6YPHkylixZguLiYgwfPhwLFiyAr68v3nvvPaxfvx7vvPMOunfvjpdffhkRERGN3SzUjAUEBECj0eD+/fsNitL169cREBBgfFx7jJeWlqJt27Zo1aqV8bng4GCUlJQAAPR6PVavXo19+/ahrKwMSuWDY2mNRgM/Pz8AQGBgoHFeb29vVFZWNohPo9Ggurpa0gccSkpK8PTTT5uclp2djXXr1uH8+fMwGAy4d+8eQkND62wHLy+vOvO0adMGPj4+xschISEoLS2FRqOBTqerk9MhISG4du2a8XHtdavZRqbWz93xDMkFrly5gkWLFuH1119HTk4OcnNz8dhjj9Vpo1AojH+3a9cOHh4exuQEUOdva4KDg5Geno7c3Fzjv+PHj6N3794AgClTpmDbtm3YvXs3zp8/j3/84x8AgB49emD9+vU4cuQIhg0bhnnz5jVirakliIiIgKenJ/bv31/n+crKShw+fBj9+/c3Pld7jHfo0AG3b99GVVWV8bnaY3zXrl349ttvsWnTJuTl5eHgwYMAUOd9UilqCoWUj4AHBwc3eK8WALRaLebMmYNp06bhhx9+QG5uLgYPHlwnltrrVuPOnTt1ikhJSQmCgoIQEBAAtVqN4uLiOtM6duxo07o1ByxILlBVVQWFQoF27doBePAGae03aOtTqVQYPnw41q5di6qqKpw5cwbbt2+XvLxJkyZh48aNxmWUl5dj7969AIDjx4/j2LFj0Ol0aNWqFTw9PaFSqaDVarFz506Ul5dDrVajdevWUKlUjVhragn8/Pzw4osvYtmyZTh8+DB0Oh0uX76MuXPn4qGHHsLo0aNNzvfwww8jPDwca9asgVarRX5+Pg4dOmScXlFRAU9PTwQEBKCqqgqrVq2yKz6lUonx48fjrbfewrVr16DX65Gfn2/y03/JycnYtm0bfvzxRxgMBly7dg1nz56FVquFVqs1HihmZ2fjhx9+kLT8mvXLzc3Fd999h4SEBKhUKiQkJGD16tW4e/curly5gk2bNiEpKcmudXRnvGTnAr/97W8xbdo0TJo0CQqFAmPGjDGerZizePFiLFy4EDExMejatSvGjRuHnJwcScsbPnw4Kioq8Je//AVXrlyBn58fBgwYgBEjRqCiogLLly/H5cuX4enpiYEDB2LatGkAgB07dmDp0qXQ6/V49NFHsXLlykavOzV/zz//PPz9/bFy5UpcvHgRvr6+GDZsGN5++22T79XUePvtt5GWlobo6Gj06NEDI0eOhF6vBwCMGTMG//nPfzBo0CD4+/tj7ty5+PTTT+2Kb8GCBXjnnXeQnJyMyspKPP744yY/QdqjRw+89dZbxvwIDAzE4sWL0a1bNyxatAjz5s2DVqtFbGxsg/e7TAkMDESbNm0waNAgtGrVCm+++abxPanXX38dS5cuxbBhw+Dl5YUJEyZg/Pjxdq2fO1MIW895iYiawLx589C1a1fMmTPH1aFQE+ElOyKShePHj+PixYswGAw4fPgwvv32WwwbNszVYVET4iU7IpKFGzdu4KWXXsKtW7fw0EMP4c0338QTTzzh6rCoCfGSHRERyYLVM6SMjAx8/fXXuHLlCnbt2lXns/bWGAwGVFRUQK1Wm/wYJJG7EEJAp9OhdevWxu/ASGVvDjF/qLmQmj9WC9LQoUMxZcoUTJ482eYgKioqjL+LRtQchIaGGr+IKZW9OcT8oebGWv5YLUh9+vSxe+FqtdoYRFFREcLDw+3uq8ara79H2e2GP4TYrq03Vs4e5PB+TTG3LHv6sDaPQqnA3xcOs9p/7ZgKCwsdsq1rSNnmjtgvUuJ21v63RqvVoqioyDimbWFvDtXOH0sfl3Y2R25zZ+SI1PZS4rUld6TEZcs2smXb2Np3DUe/NkglNX+c+qGGmssMNUd5hYWFje7zl+IKk8/fqqhoVP/m+rVlWfb0IWWemmVZals/Jkds6xpStrmj9ou1ts7a/1I15aWz+vnjKo7c5s7KESntpcYrdZ2kxGXLNrJl29jad21NkSfmWMufJvmUXXh4OAoLCxEZGdnovjrsvYnrmqqGzwe0alT/5vo12dbMsuzpw9o8SqXCuCxLbWvHlJeX55BtbexbwjZ3xH6RErez9r811dXVLkvk8PDwBr+L1pQcuc2dkSNS20uJ15bckRKXLdvIlm1ja981HP3aIJXU/HG77yFNGREGL3Xdn7DxUqswZURYo/tVKa0f/VpalqnYVEoFPFR1+63dh6l5akuI7mI1Rg+VotHrb4mUbe6s/WJPLORYjtzm9uSZtRyR0t5ZY7F+btemUtqWl1LWs0ZzHfNu9z2kIZEPfqU3c+9J3NBUITCgFaaMCDM+39h+N2YVoLxSBwDw81Gje4gaF24KScsyF5uleGvPU/voSKlUICG6C2Yl97Ia44wxTzV6/S2Rss2dtV/siYUcq/4Y7dCIbW5uDA/qGYKjp0qt5kjN9KjHg2xq78yxWHtdatiTl/W3s1KpgMEg0MHK+jYnVr+HtGzZMuzfvx83btxAQEAA/P39sXv3bkmd15ymOfKSXVNz1SluY7hjzIC84649lm29fGZvDjVmmc4i533kCFw/55A6lq2eIS1atAiLFi1yaHBELQlziEgat3sPiYiImicWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgUWJCIikgVJBencuXOYOHEi4uPjMXHiRJw/f97JYRE1H8wfImk8pDR644038Pvf/x6jR4/Gjh07sHjxYmRmZjZqwd/lXULm3pO4oalCYEArTBkRhiGRnRvVp5S+zU1b/8X/YV/ORRgMAkqlAgnRXTAruVedfhet/w+OnbnpkBid7pPLro7ALIUCEOLB3yoloDf8Ok312WV4qJSo1j140ttTBbWHEncrdQgMaIWox4Nw9FSpQ8eNM8ci0HT5A6DOc7Zuq5o+r2uq6jzv7amC7r7+1/30yWWoPZTQ3Tc07KQ5kHHuWOPtqcI9rR5KpQIGgzDd5ouSOjnVmLHzXd4lbMwqQHmlDgDg56PGjDFP2Z0/CiGE6aj/6+bNm4iPj0dOTg5UKhX0ej2io6Oxf/9+tGvXzmLn1dXVKCwsRHh4OAoLCxEZGWlcibVbj6Fapze29VKrMHtCT4e8uJjrG4DJaY//xt9koRnZ/zfo+6gekZGR7lWMWpDGjhupY7H2WPby8pLcv6Pyp/YyTcWsUiqgUAD39ebT2dK2MtUntQz2jp3v8i7hb5/lQ1+v8HmoFJg7McKu/LF6ya6kpAQdO3aESqV6ELxKhaCgIJSUlFib1azMvScbDPxqnR6Ze0/a3aeUvs1NM1do9uVcNP7NYiRPjR03zhyLQNPlj94gLL6gAJbXy1Sf1DLYO3Yy955sUIyAB4XN3vyRdMmusQoLCwEAeXl5ANDgkkCN65oqYxt7WerbVjWnvI2NiZyrMePGmWPRUWryp4Y9Y7n2vKbWqzF9UstQf+xYGjP25o/VghQcHIxr165Br9cbLzmUlpYiODjYauc1VwNDQ0NRVFSE8PBwAEDXEA3Kbt9r0L5dW29jG3tZ6huAyWnmKJQKAEB4eDj8W9t/REvO1ZhxI3UsarVaFBUVwcoV7gYclT+enp5WY5bC3LZqTJ/UMtQfO5bGjL35Y/U9JABITU1FcnKy8U3ZL774Ah9//LHVFSgvL0dRUZHVdkTuIjQ0FH5+fjbNw/whesBa/kgqSGfPnkVaWhru3LmDNm3aICMjA127drW6cIPBgIqKCqjVaigUCtsiJ5IRIQR0Oh1at24NpdK2r+8xf6ilk5o/kgoSERGRs/GXGoiISBZYkIiISBZYkIiISBZYkIiISBZYkIiISBZYkIiISBZYkIiISBZcUpBycnIQFhaGf/3rX65YvM3S09ORkJCApKQkTJo0CQUFBa4OySR3vO+ORqPB888/j/j4eIwaNQqzZ89GWVmZq8MiC9wlH2zhjrkjlVvlmGhi5eXlIjk5WcyYMUN8/PHHTb14uxw8eFBotVrj30OHDnVxRKalpqaKrKwsIYQQWVlZIjU11cURWafRaMRPP/1kfLxixQqxcOFCF0ZE1rhLPtjCHXNHKnfKsSY/Q1qxYgWmT5+OgICApl603WJjY6FWqwEAvXr1wtWrV2EwyOvmZDdv3sSJEyeQmJgIAEhMTMSJEyfkeyT0X/7+/oiOjjY+7tWrF4qLi10YEVnjDvlgC3fNHancKceatCBlZ2fjzp07SEhIaMrFOtSWLVswZMgQm3/PzNmccd+dpmYwGPDpp58iLi7O1aGQRHLNB1s0h9yRSu455tD7IY0dO9Zs5d23bx/eeecdbNq0yZGLdAhLcR85csQ4UHfv3o1du3Zhy5YtTRlei7F06VL4+PggJSXF1aG0aMyH5kvuOebQgrR9+3az03Jzc3H9+nVMmDABwIM32g4dOoRbt25h9uzZjgzDZpbirnHgwAGsXr0amzdvRmBgYBNEZZvG3HdHDjIyMnDhwgVs2LDBrY+2m4PmkA+2cPfckcotcsxVb14tWLDArT7UEBsbK86fP+/qUCxKSUmp88ZsSkqKiyOSZtWqVSIlJUVUVla6OhSSwF3ywRbumjtSuUuOuez2E2lpaQgPD5ftqWNt/fr1g1qtRrt27YzPbd68WXYfzLD3vjuudPr0aSQmJuKRRx6Bt/eDu/p26tQJ69atc3FkZI675IMt3DF3pHKnHOP9kIiISBZkeiGRiIhaGhYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkIiKSBRYkN5GamoqtW7eanFZcXIyIiAjo9XqT09esWYP58+dLakvkSrXHqilxcXE4cuRIE0ZkXkREBC5duuTqMJoVh97CnOqKiIgw/l1VVQVPT0+oVCoAQHp6OpKSkhyynJCQEOTn59vVNjU1FUlJScZbyxM1hV27dmHTpk04d+4cWrdujccffxwzZ850dVg2kZpzJB0LkhPVHrBxcXFYtmwZBgwYYFMfQgjwHorUnGzatAkbN25Eeno6Bg4cCLVaje+//x7ffvstfHx8nLLM+/fvw8ODL3dyx0t2LlD/ssTly5fRvXt33L9/H8CDs5bVq1dj0qRJ6Nmzp/GywMWLF5GcnIzIyEjMmjULt27dMjn/pUuXkJKSgoiICEydOhUajcbkslavXo3c3FwsWbIEERERWLJkCdLT07FixYo68c6cORObN2924hahlqK8vBzvvfceFi9ejGeeeQY+Pj5Qq9WIi4vDggULAAA6nQ6vvvoqIiIi8Oyzz6KgoMBkX1qtFn/9618xcOBADBw4EH/961+h1WoBADk5ORg8eDA2btyImJgYLFy4ELdv38af/vQn9OvXD1FRUfjTn/6Eq1evGvurnXcRERGYOXMmNBoNXn75ZfTu3Rvjx4/H5cuXje27d++OCxcuAADS0tKQnp6OGTNmICIiAhMmTMDFixeNbc+ePYupU6eib9++iI+Px549e4zTsrOzMXLkSERERGDQoEH48MMPHbfB3QwLkkzt2LEDS5cuxf/+7/8iJCQEAJCVlYXly5fj+++/h4eHB5YtW2Zy3vnz5+PJJ59ETk4OXnjhBWzfvt1kuz//+c/o06cPFi9ejPz8fCxevBhjx47FV199BYPBAAAoKyvDjz/+iMTEROesKLUo+fn5qK6uxvDhw822OXjwIJ599lnk5uYiLi4OS5cuNdlu/fr1OHbsGHbs2IGdO3eioKAA77//vnH6jRs3cPv2bRw6dAhLly6FwWDAuHHjcOjQIRw6dAheXl5YsmRJnT737NmDlStX4vDhw7h48SImTZqE8ePH43/+53/QrVs3rFu3zmzcu3fvxuzZs3H06FF06dIFq1evBgBUVlZi2rRpSExMxJEjR7Bq1Sqkp6fj9OnTAIDXXnsNS5YsQX5+Pr766iv069dP8vZsbliQZGrs2LF47LHH4OHhAbVaDQAYPXo0QkND4ePjg7lz52Lfvn0NPpxQXFyMgoICzJ07F56enoiKikJcXJzk5fbo0QN+fn748ccfATxI0L59+yIwMNBxK0ct1q1btxAQEGDx8llkZCSefvppqFQqjB49GqdOnTLZbteuXXjxxRfRvn17tGvXDi+++CJ27txpnK5UKjFnzhx4enrC29sbAQEBiI+PR6tWreDr64tZs2bh6NGjdfocN24cunTpAj8/PwwePBidO3fGgAED4OHhgYSEBJw4ccJs3MOHD0ePHj3g4eGBpKQknDx5EgDw3Xff4eGHH8b48ePh4eGBJ598EvHx8fj6668BAB4eHjhz5gzu3r2Ltm3b4sknn5S8PZsbFiSZCg4OtvhcSEgIdDpdnctxAFBaWoo2bdrUuRZfc4Yl1dixY42JvXPnTowePdqm+YnM8ff3h0ajMV5eNqX2wY+3tzeqq6tNti8tLa0ztkNCQlBaWmp8HBAQAC8vL+PjqqoqLF68GLGxsejduzcmT56MO3fu1Dmoq71sLy+vBrFUVlZKjrum7ZUrV3D8+HH06dPH+G/Xrl24fv06AOC9995DdnY2YmNjkZKS0qI/LMF3+VygVatWuHfvnvHxjRs3GrRRKBQNnispKanzt1qtRkBAQJ3nO3TogDt37qCystJYlIqLi032Z05SUhISExNx6tQpnD17FsOGDZM8L5ElERER8PLywjfffIOEhIRG9RUUFITi4mI89thjAB7kRFBQkHF6/TH/0Ucf4dy5c/j3v/+NDh064OTJkxgzZozTPzQUHByMqKgobNq0yeT0Hj16YP369dDpdNiyZQvmzZuH7Oxsp8YkVzxDcoGwsDAcPXoUxcXFKC8vxwcffCBpvp07d+LMmTOoqqrCu+++i/j4eOPHyGs8/PDDCA8Px5o1a6DVapGbm4tDhw6Z7TMwMLDBdykeeughPPXUU3jllVfwzDPPwNvb2/aVJDLBz88Pc+bMwZIlS/DNN9+gqqoKOp0O2dnZWLlypU19Pfvss1i/fj3KyspQVlaGdevWYdSoUWbbV1RUwMvLC23atMGtW7ewdu3axq6OJEOGDMH58+eRlZUFnU4HnU6H48eP4+zZs9Bqtdi5cyfKy8uhVqvRunXrBjndkrAguUBMTAxGjhyJpKQkjBs3DrGxsZLmGz16NNLS0hATEwOtVovXXnvNZLt33nkHx44dQ3R0NNatW4cxY8aY7XPKlCn4+uuvERUVVedDEmPGjEFRUREv15HDTZ06FWlpaXj//ffRv39/DBkyBFu2bLH5TPyFF15AeHg4kpKSkJSUhCeffBIvvPCC2fZ/+MMfUF1djX79+mHixIkYNGhQY1dFEl9fX3z44YfYs2cPBg0ahIEDB+Ltt982fiJwx44diIuLQ+/evfHZZ5/ZXJibE4Xgl1zIhKNHj+KVV17BwYMHoVTyuIWInI+vNNSATqdDZmYmkpOTWYyIqMnw1YbqOHv2LKKionD9+nX88Y9/dHU4RNSC8JIdERHJgtWPfWdkZODrr7/GlStXsGvXLoSGhkru3GAwoKKiAmq12qaPHRPJjRACOp0OrVu3tvkypr05xPyh5kJq/lgtSEOHDsWUKVMwefJkm4OoqKhAUVGRzfMRyVVoaCj8/PxsmsfeHGL+UHNjLX+sFqQ+ffrYvfCan7wJDQ2Fp6en3f3UVlhYiPDwcIf05Uyvrv0eZbfvWWzTru2D7/eYateurTdWzh5UZ32l9KlQKiAM1q/CmmtXs1xbSYlNSv9y3b9arRZFRUXGMW0Le3PIGfljirl9V7OvGjPurPVhbj57x6e18SN1nCqUCvx9oe1fCLe2LW3hzFywJU5LbQHLr181CgsLAcBq/jj1lxpqLjM4+iivZuXk7JfiCqttblWYb3OrosK4njX/S+mzsWov1xZSY5PSv5z3b1NeOnNW/tRnbt/V7KvGjDtH9GGqP0ssTbclDkfmgb155axcsCVOS23NMbe+1vKnSX46KDw8vM5vSjVGXl4eIiMjHdKXM3XYexPXNVWW2wS0AgCT7ToEtEJkZGSd9ZXSp1KpgEHCGZK5djXLtZWU2KT0L9f9W11d7bJC6cj8McXcvqvZV40Zd9b6MDefvePT2viROk6VSoVD88CevHJmLtgSp6W2gOXXrxp5eXmS4uLHvp1kyogweKnN/wSIl1qFKSPCTLarmWaqT5XS/BGGl1qFhOgusHYQ76FSICG6i+TlSmFtfRvbPznPlBFhUKvqDpra+0rKWLY2nsyNc3PzOXp81pAyTgEgIbqLw/qX47i39XXHXFtHry9/XNVJhkR2BgBk7j2JG5oq+Po8uHZ6t1KHwIBWmDIizNimdjtT0+r3uTGrAOWVOgCAQgEI8eCIpGa+sEfbY+3W/0O1ztCgDz8fNWaMecrYTspy7VnfwIBWiHo8CEdPlTqkf3KeIZGdce7cOXx/6p7JfSV1LFsaT6bGh7X5HDk+a69r/ThC2vug4JcyGAwCSuWDg7VZyb0c1r8cx70tcUpp66j1tfo9pGXLlmH//v24ceMGAgIC4O/vj927d0vqvOYyR0u8ZOcoXF95aMxYtjeHnJE/5sh1u9uquawH0PzWBbB++dnqGdKiRYuwaNEix0VG1MIwh4ik4XtIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCyxIREQkCx5SGp07dw5paWm4desW/P39kZGRgUceeaRRC/4u7xIy957EDU0VAgNaYcqIMABA5t6TuK6pglKpgMEg4OejBgDcrdQhMKAVftNegXey9qC8Uteo5buVTy67OgKbKBSAEKantfPzRFm51nIHFtbXz0eNGWOewpDIzpJiMTXO6s8rpU1jODN/audKh//GfvLcTez58YKxrbenCi8m98SQyM511tX3v7llzKV6293PR41BPUPw/bFi98o3N8sXU/x81Ogeosa6vfvrjMuT525iX85FGAwCSqUCT3Vth+KblXXGQf3xYGksO3vs20ohhLmXjl9NmTIF48ePx+jRo7Fjxw58+eWXyMzMtNp5dXU1CgsLER4eDi8vL+Pz3+Vdwtqtx1Ct0xuf81ApIASgN1gNh1o4D5UCcydGWE0cU+PMS63C7Ak9jfNKaQOYH8tSNEX+1DB3MKBUKpAQ3QXf5l42OR/JX02hsYWpsVxD6th3hLy8PACwmj9WL9ndvHkTJ06cQGJiIgAgMTERJ06cQFlZmd3BZe492SAp7usFixFJcl8vkLn3pNV2psZZtU5fZ14pbRqjqfKnhrnDS4NBYF/ORRYjN2ZrMQIsj2Vnj317WL1kV1JSgo4dO0KlUgEAVCoVgoKCUFJSgnbt2klaSGFhYZ3H1zVVdoRK9KvrmirjUZelNtbmldKmMeSUP/a8oJH7MzeWnT327SHpPSR71VwNDA0Nhaenp/H5riEalN2+58xFUzPXrq03wsPDLbYxN85qzyulDQBotVoUFRVBwhVuh3F0/iiUCggWpRbHXK5IHfuOUHNQZS1/rL6HdPPmTcTHxyMnJwcqlQp6vR7R0dHYv3+/1SO88vJyFBUV2Rg6kXyFhobCz89PcnvmD9GvrOWP1TOk9u3bIywsDF999RVGjx6Nr776CmFhYZIuN7Ru3RqhoaFQq9VQKBS2RU4kI0II6HQ6tG7d2qb5mD9E0vNH0qfszp49i7S0NNy5cwdt2rRBRkYGunbt6rBgiZoz5g+RNJIKEhERkbPxlxqIiEgWWJCIiEgWWJCIiEgWWJCIiEgWWJCIiEgWWJCIiEgW3LIgpaenIyEhAUlJSZg0aRIKCgpcHZJTnDt3DhMnTkR8fDwmTpyI8+fPuzokp9FoNHj++ecRHx+PUaNGYfbs2Y36AVKynbvnVXPIl+aaB2vXrkX37t2t//KIcEMHDx4UWq3W+PfQoUNdHJFzpKamiqysLCGEEFlZWSI1NdXFETmPRqMRP/30k/HxihUrxMKFC10YUcvj7nnVHPKlOeZBYWGhmD59uhgyZIj4+eefLbZ1yzOk2NhYqNUPbi7Wq1cvXL16FQaDwcVROZYzblsgZ/7+/oiOjjY+7tWrF4qLi10YUcvjznnVXPKlueWBVqvFkiVL8MYbb0j6+Su3LEi1bdmyBUOGDIFS6farUoel2xY0dwaDAZ9++ini4uJcHUqL5W551RzzpTnkwbvvvoukpCR07izthn9Ovf2EvcaOHWv2qODIkSPGQbd7927s2rULW7ZsacrwyMmWLl0KHx8fpKSkuDqUZoV55V7cPQ/y8/NRUFCA+fPnS55HlgVp+/btVtscOHAAq1evxubNmxEYGNgEUTWt4OBgXLt2DXq93njbgtLSUgQHB7s6NKfKyMjAhQsXsGHDBrc5OncXzTmvmlu+NIc8OHr0KH755RcMHToUAHD16lVMnz4db731FgYOHGh6piZ6X8uhDh48KGJjY8X58+ddHYpTpaSk1HmTNiUlxcUROdeqVatESkqKqKysdHUoLZK751VzyZfmmgexsbFWP9Tglr/23a9fP6jV6jr3lNm8eTMCAgJcGJXjtaTbFpw+fRqJiYl45JFH4O3tDQDo1KkT1q1b5+LIWg53z6vmkC/NOQ/i4uKwYcMGhIaGmm3jlgWJiIiaH/e8OElERM0OCxIREckCCxIREckCCxIREckCCxIREckCCxIREckCCxIREckCCxIREcnC/wO6RLbl5ebcuwAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 6 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"ph_val = X_test[\"ph\"]\n",
|
||
"sulfate_val = X_test[\"Sulfate\"]\n",
|
||
"hard_val = X_test[\"Hardness\"]\n",
|
||
"carb_val = X_test[\"Organic_carbon\"]\n",
|
||
"turb_val = X_test[\"Turbidity\"]\n",
|
||
"ch_val = X_test[\"Chloramines\"]\n",
|
||
"\n",
|
||
"\n",
|
||
"figure, axes = plt.subplots(nrows=3, ncols=2)\n",
|
||
"\n",
|
||
"axes[0, 0].plot(ph_val, predictions, 'bo')\n",
|
||
"axes[0, 0].set_title(\"pH\")\n",
|
||
"\n",
|
||
"axes[0, 1].plot(sulfate_val, predictions, 'bo')\n",
|
||
"axes[0, 1].set_title(\"Sulfate\")\n",
|
||
"\n",
|
||
"axes[1, 0].plot(hard_val, predictions, 'bo')\n",
|
||
"axes[1, 0].set_title(\"Hardness\")\n",
|
||
"\n",
|
||
"axes[1, 1].plot(carb_val, predictions, 'bo')\n",
|
||
"axes[1, 1].set_title(\"Organic carbon\")\n",
|
||
"\n",
|
||
"axes[2, 0].plot(turb_val, predictions, 'bo')\n",
|
||
"axes[2, 0].set_title(\"Turbidity\")\n",
|
||
"\n",
|
||
"axes[2, 1].plot(ch_val, predictions, 'bo')\n",
|
||
"axes[2, 1].set_title(\"Chloramines\")\n",
|
||
"\n",
|
||
"figure.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<matplotlib.collections.PathCollection at 0x7f716bdc1310>"
|
||
]
|
||
},
|
||
"execution_count": 12,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD7CAYAAAB+B7/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACA70lEQVR4nO2dd3gUVReH35mt6Qm999577yBNqoIUAaUoAiIfiCCIIF1EadJBmhQFkQ7SeyfU0HtNgIRA2vad74+FhZDdzaZAQpj3eXgesrNz58wme+bec8/5HUGSJAkZGRkZmTSDmNIGyMjIyMgkL7Jjl5GRkUljyI5dRkZGJo0hO3YZGRmZNIbs2GVkZGTSGMqUNsBqtRIdHY1KpUIQhJQ2R0ZGRuadQJIkTCYTXl5eiGLsOXqKO/bo6GiuXLmS0mbIyMjIvJMUKlQIHx+fWK+luGNXqVSAzTi1Wp2itgQFBVGiRIkUtcEVsn1JJ7XbmNrtg9RvY2q3D5LHRqPRyJUrV+w+9FVS3LG/CL+o1Wo0Gk0KW0OqsMEVsn1JJ7XbmNrtg9RvY2q3D5LPRkchbHnzVEZGRiaNITt2GRkZmTRGiodiZGRkZFIjkuUxmC+B6A/KEu9U1p7s2GVkZGReQZIMSM++B/12ENSAFQR/CJiGoCqV0ua5hRyKkZGRkXkF6el3oN8BGEGKAikGrA+QnnyGZAlJafPcQnbsMjIyMs+RLCFg2AUYHBw0IsX8+dZtSgyyY5eRkZF5gSnoefjF4UEwHH2r5iQW2bHLyMjIvED0BVz0HhL935YlSUJ27DIyMjIvUJUHnBQOCZ4Inh3fqjmJRXbsMjIyMs8RBAWC/xTAg9hJgx6grg2aOiliV0KR0x1lZGRkXkHQVIEM65GiF4ApEMR0CJ6fguYDBOHdmAsnu5XTp0+ncOHCsmKjjIzMO4ugzI3oNxIxw0bEdEsQtI3eGacOyezYz58/z+nTp8mWLVtyDisjIyMjkwCSzbEbjUZGjRrFiBEj3qnSWxkZGZm0RrI59qlTp9KiRQty5syZXEPKyMjIyCQCQZIkF0mb7nHq1CkmT57M4sWLEQSBevXqMXv2bAoVKhTvuQaDgaCgoKSaICMjI/NeUqJEiTja7smSFXP8+HFu3LhB/fr1AQgJCaF79+6MHz+eGjVqJNq4t01gYCDly5dPURtcIduXdFK7jandPkj9NqZ2+yB5bHQ1KU4Wx/7ll1/y5Zdf2n9OyIxdRkZGRiZ5eXfyd2RkZGRk3OKNFCjt2rXrTQwrIyMjI+MG8oxdRkZGJo0hO3YZGRmZNIbs2GVkZGTSGLJjl5GRkUljyI5dRkZGJo0hO3YZGRmZNIbs2GVkZGTSGLJjl5GRkUljyI5dRkZGJo0hO3YZGRmZNIbs2GVkZGTSGLJjl5GRkUljyI5dRkYm1SNJ1pQ24Z1CduwyMjKpEkkyYo2chPVheaSHRbA+qo41eqHs5N3gjcj2ysjIyCQFSZKQnvQA0ynAYHvR+hgipyCZryP4jUlR+1I78oxdRkYm9WE8DOaz2J26HR3o1iGZ76SEVe8MsmOXkZFJdUj6rSDFOH+DYc9bs+VdRHbsMjIyqRApnmOujsvIjl1GRibVIWgbgeDp7Choar9Ve941km3ztHfv3ty7dw9RFPH09OTHH3+kaNGiyTW8jIzM+4S6KiiLgimI2HF2D9A2RlDmSSHD3g2SzbFPmDABHx8fAHbs2MHQoUNZs2ZNcg0vIyPzHiEIIqRbiBQ5BXR/gaQHwQ+8uiF49Uhp81I9yebYXzh1gKioKARBSK6hUy0Ws4Wz+y4QFR5NoQr5yZw7Y0qbJCOTZhAELYLv90g+gwEjoH4v/EpyIEiSlGy7ED/88AMHDx5EkiTmz59PwYIF4z3HYDAQFBSUXCa8Na4dv8XyoeuwmCwAWEwWClfLR7vRLVBrVSlsnYyMzPtCiRIl0Gg0sV5LVsf+grVr17Jp0ybmzZsX73tfOHZHxr1tAgMDKV++fLzvu38tmJ5lvsMQEzvHVq1VUaVZeX5c+W2K2pdSpHb7IPXbmNrtg9RvY2q3D5LHRle+841kxbRq1YqjR48SHh7+JoZPcVZP3ojZaI7zulFv4vCGQELvh6WAVTIyMjI2kiXGHh0dTUREBFmzZgVg165d+Pn54e/vnxzDpzrOH7yMxWxxeEytVXHj7B0yZE//lq2SSY08CQnnn0kbObTuOEqVgg+61KbZVw3x8nWWyicjk3SSxbHrdDr69euHTqdDFEX8/PyYPXt2mt3o8M/k5/SY1WLFL4OP0+My7w/3rwXTt8pQ9FF6TM9XeEtGrmLT3B3MOP4zPgHeKWyhTFolWRx7hgwZWLlyZXIM9U7Qsk9jLhy+jD76dR0L8EnnTaEK+VPAKpnUxtRe84h6Go1kfbmNZdQZCb0XxtLR/9Br0ucpZ5xMmkauPE0EVVtUoFqrSmi9Xm5YqDQqPHw8GP7PwDS7UpFxn+iIGM7tvxjLqb/AZDSzfcneFLBK5n1Blu1NBIIg8P2SvpzYepoNs7fx7HEEZeqWoHnvRmTIli6lzZNJBRhiDIii8we8Icb4Fq2Red+QHXsiEQSBio3LUrFx2ZQ2RSYV4p/JDy8/L4z6pw6PF6qY7+0aJPNeIYdiZGTeAKIo8vnodmg849ZmaDzVdB3dIQWsknlfkGfsMjJviKY9GqCP1rNo+EoEwdYVSK1V87/ZX1KqVrE47w/cfoZZg5by+OY0fNN707JPY1p+3RiVWq5klkkYsmOXkXmDfNSvGc2+asS1kzdQqJQUKJsHhUIR532b5m1nVv/F9mrmmIgYFg3/iyObApmw7UeH58jIOEMOxbxDRIZG8fvX8/k4YzdaBXzG6HaTuH3xXkqbJRMPao2KYlULU7hCfocOWhelY9b/FsWRqDDEGLl8/DpHNgS+LVNjYbVaiXoa7bQYTyb1Ijv2d4Sw4HCmdlzApnk7iAiLJPpZDPtXH+HrykO4evJGSpsnkwQCt59FoXI8I9dH6dm6aPdbtcditrBk5Eo+ytCVtll60NK/C7/3nY8+Jm7dhkzqRHbs7whLflpJTITeriYJIFkl9FF6pvaOX2xNJvViMphxpcX3+kz+TTOhy++snLiO6KcxmI1mDDFGtszfxXf1R2K1Wt+qLTKJQ3bs7wh7Vx7CanH8pbp++haR4VFv2SKZ5KJkzSKYTY7DHRpPDdVaVnxrtty5dJ+D647HybM3GUzcPn+XwO1n35otMolHduzvCM6++GDLqTcZTEkc30zQgYuc2nUOXZQuSWPJJIwM2dPT4NOaaDzVsV4XFSLe/p580KXOW7PlxH+nkZzMynVReg6uOfrWbJFJPHJWzDtC6TrFObblpMPm7AFZ/AjI7J/osfeuPMSUr+ZitVoRBAGzyUy7wa3oNKyNLI/wlug3+0v8Mvry79RNiAoFFpOZ0rWL8+0fvfD08XhrdogK0envXBBAVMrZOe8CsmN/R+g6pj2ndp3FpI+tA6/xVPPVr58l2gGf2XOeid1mxFl6r5ywDm8/L1p/0zTRNsu4j0KhoPu4TynerAA5M+XCJ503vunevkpo5WblmDf4T4fHNJ4aaretihn9W7ZKJqHIoZh3hAJl8tJjenvylsyFSqNC46EmQ470fLfwa2p+XCXR4y4a/pdD3RJ9jIGlo1dhscipbm8TlUZJ9gJZU8SpA2TNm5nG3eqhfa1iVuOhpkT1Ig4Lq2RSH/KM/R0id+kczD3zG09CwjEbzWTMmSHJoRJXqZKGGCNPgp+SMUfaaRpi1Ju4dvom3v5eZMmTKaXNSZV8/Xt38pbMxYrxa3h8Lwy/DD606tuUdoNayqG5dwTZsb+DpMsSkGxjeXh7OFUatFisePpok+1aKYnVamXx8L9ZNWkDKrUSs9FM9oJZGbykL/lL50lp81IVgiDQrGdDmvVsmNKmyCQSORTzntOkez1UmrhaJKIoULJmUbz8vFLAquRn/vdLWT1lEya9iZgIHUa9iZvn7jCg9nAe3Q2N9V6j3kjg9jMc3RQop5HKvJPIM/b3EIvZws1zd0CAtt+15ND6E4TcfGifuau1KrReWvrP7ZnCliYP0c+iWTd9K0Z93JWJUW/k3ymb+Oq3zwDYung3M75ZYA85mIxmWvdtQo+fO8lhCJl3hmRx7OHh4QwaNIg7d+6gVqvJnTs3o0aNIl06uelEamPHsn3M+t9Cew9OtUbFFxM7Y4g2snXRbkxGEzVaV6ZF70b4Z3Te2/Vd4urJm6g0SoeO3Wy0cPy/U3z122ec3HGW3/vMjxOaWj9zKz7pfGg/uNVbslhGJmkkSyhGEAR69OjB1q1b2bBhAzlz5uTXX39NjqFlkpFD648zpeccIsKi0EXq0UXqeRYaye995pMlbyZmHPuZuad/o8uIT9KMUwfQemlclsJ7eNvyxBeP+NtxhlC0gb8nrJXFsGTeGZLFsfv7+1O5cmX7z2XKlOHBgwfJMbRMMjJ/8FKHjssQY2T+90tTwKLEI1mjkEyXkCxh8b63UIX8cdL3XqD11ND0iwYAXD9z2+kYJqOZsOBwt2w7ueMs/Wv9SKt0n/FZwa9ZM20TZpM5/hNlZJKJZN88tVqtrFixgnr16iX30DJJwGgwce9qsNPjt4LuvhM565JkwPpsKNKjqkhPOiI9ro31SVckyyOn54iiyKDFfdF4amLFyTWeavKUzEWDzrUA8PJzXuFpMVvw8o2/AnTjnG0Ma/EzQQcuEf00hgfXHzLnuz8Z0mTsO/H5yqQNBMmVrFwiGDlyJA8fPmT69OmIYvzPDYPBQFBQUHKaIOMAq8XKsBq/YjU7DkkoVArGHByY6jcI86WfgI/mPKLwUhtHkkSMlnRcfPgbEmqn5z648pDdCw9z6/RdtF4aKn9clsoflUWlsW01bZ+7n72Lj2A2xnbAgihQoFIeuv/ezqVthmgDoz6YFkuB0z6GAJ/+3JoS9QojSVKq/5xl3h1KlCiBRhN7RZqsWTETJkzg9u3bzJ492y2nHp9xb5vAwEDKly+foja4Iqn2VW9ZkYNrj8dRiVQoRWq1qUqFChVS1L74kExXkcIuAbEFzwTBikYVQ9liDxE8Wjk9v3x5yFYos1Mbi08uwZ3AB9y9/AB9tE0qV+OhxtPXg5/++o5MuTK6tG/vykMOnTqAJMGWaXvYPGUPT0LC8UnnTeWm5UCyCbxVa1mRGh9V4uy5s6n6bxDS/vfkbZAcNrqaFCebY588eTJBQUHMnTsXtdr5rEkm5fhq0uec3XuRmIgYe1aMSqPE29+LL3/plMLWuYHpuPNjUgySYY9Lxx4fWk8NUw6OZc9fB20ZQgZbhlCTHvXxCfCO9/xb5++6PB52/2WMPjIsih1/7rP/fHRTIH+OWkXXGW0Tbb+MzAuSxbFfvXqV2bNnkydPHtq3bw9Ajhw5mDFjRnIML5NMZMqZgXlBk1g9eQP7Vh0GQaDOJ9X46H8fviNZMFqcbwsJIMTvfONDrVHR8LM6NPysToLPzVkke6Kvq4vSE3zjIesmbKVm3eqJHkdGBpLJsRcsWJDLly8nx1Ayb5iATH70GN+JHuPfgRn662jrQsQIZwcRPFq/VXNep/KH5RBFMdFdhsxGM+f3XEEfY3CaxSMj4w6ypIDMO4MgBoDPt8Br2SmCB2jrg6pcitj1Ai9fT9p+1xyFMvFfK0EUiJJlDGSSiCwp8J6ijzFw/L/T6CJ1FKtaiByFsr2R68RE6tgwayvbFu/BqDdRtXkF2g5s4ZZipNlk5uDa45zedQ5PX0/qf1qTfKU+R1IWRIqaCZbrIGZE8OoK2lapItOk+7hP8fL1ZMXPa7BYrFjNFnIXzcmdS/fd6nIliCJ+GX3fgqUyaRnZsb+H7Fqxn0lfzEGhsIUNrBYr5RqUYtjf/dF4JF8IIPpZNH0qDeHxvTCMOlth1IZZ29i2eA9TD44hd7GcTs99EhLO/6oP4+njCHRRekSFyLrpW2jSvR69p3ZDTJ+8cWhJkrhy4jrBNx6SJW8mClcskKgHhSAIdBjyEW2+bc7D26F4+XkSkMmP0e0mcXRToFMlTbDl1Vf9pBwqdVxRNhmZhCCHYt4zLh+/xqQeszHEGIiJ1KGPNmDUmzi54yyTv5yTrNf6a8JaHt0JtTt1sM3CYyJimPTFbJfnju80jUd3Q9FF2br1WC1WDDoj/y3czcG1xxJsi1Fv5J9JG/j14zm0y/YFoz75jetnbgEQcusRPUoMYGC9n5j85Ry+qz+S7sX+R/CNhwm+zgtUahU5CmYlIJNtU3rosn60G9QKb38vFEoRpUqBqBDRemnQeKpRa1VUb1WJD3rWSvC1JMmMZAlDkpw/NGTeL+QZ+3vGip/XYNTHDQkY9Sb2/XOE3lO64ps+ebr3bF20x2H4QZLgSuANnoVG4JchbtghcPsZTu9ynJ+rjzaw6tf1VG9VCYvZglIV/5+w0WCif63h3D5/F8Pzh8yBf49ybPMphq8awOSec3jyIByr9WWt3r2rwfSv9SNLb8506xrxoVAq6Dy8LZ8O+xhDjAGNp4ZnoZEc3XQSs9FMuQYlyZY/C4GBgW6PKUlmpKjfIWYJSLb0VcnjQwSfYQhi0jOEZN5dZMf+nnHt5E2cFRurNEruXXlAsaqFk+VahhiD02MKpQJ9tAG/DC9fMxlNTO01j60Ld7sc98bZ27Ty/wxdlI6AzP60/74Vrfo2dRo62bZoD7cv3LM7dQDJKmGIMTD+06m2WLg19mciWSViInUcXHuc2m2rurRHkiSun77Fk5Cn5Cmew2UhkyiKdtGxgEx+NO5a1+XYLq/7bBDod8CrPUh1G5FM5yH9GgRB/nq/r8ihmPeMgCz+To/FROgY1eY3Ns7Z5tT5J4SiVQo5PWbr2Rpb1vnnzr+zY+k+J2e8RB9tCyNJEjwJecqCoSv4/ev5Tt+/ed52pw8ZXbQBXaTj5sy6SD1XTlxzacvNoDt0LdKP/rV+ZFzHKXQt0o9hzccTHRET730kBcl8E/TbIU5jaSNY7oLB9cNRJm0jO/b3jI/6fYjWy/kGaVhwOHO+XcLM/y1M0LhWq5XLh26wbOxqNszayrPQCD4b2Q6Np+MqZL8MPrFCQsE3HnJkwwmnJfmu0McY2LpwN4/uPHZ4XBftYuWgEFGqHc9s1VoVAZn9nZ4b8SSSAbWGc/9qMPpoA9HPYp7vV5xjROtfEnQPCcZwwPkxKQZJvyNZLiNJEgadIVke9DJvD9mxv2fU/qQqVVtUdOnc9TEGNs3d4dRRvk7ogyd0K/o/lg1Zy+IRfzPnuyV0zPUVdy7e47NR7R2eE3zzEb/1mGX/OejAJRRKRcJu5hUEUeDo5lMOj1VsXMZlnFwUnWe/1OtYw+mx/xbYGpO8jslg4uKRq9wMuuPC4iQiqADHdlvMcPmUmQtHrmB0I8XSEVarlb8mrKFN5u608O1CS78uzB64GIPO+UNSJvUgO/b3DFEUGTCvJ32mdSdTHhexYIXA0U0n3RpzRKtfCL7xEGOM8Xns2ohRb+L3r+dzZMMJh+eYjWYOrTvO08fPAFszjCTloUvYdmUd0KZ/M9QecVMINZ4aWvf7kG9mfoHGQ42osH0dRIWIxlPN1793d9k4/MyeIKfpi6IocPmY6zBOktDUAeJWuO5d70f70iUY3CqEIY3H0DZzd9bP/C/Bw//afSZLR68mIjQSq8WKLkrPhplbGfzB6Dj7ETKpj/d+d8WoN7J31WEuHLpMjCWaLIOykb1A1pQ2i8jwKFaM/5fti/di0BkpXq0wlTuWTpIinMVsYd73S9k4ezuiQrArGDpEwq0v8K3zd7l94W4cxUgAk8HMlRM3nJ6r1qi4fzUE/4x+VGhUGouDMdxFkiQqNXVceZopV0Ym7R3FhC6/c/fKA1RqFZIk0WZAMzoPb4soihSuWIB/p23idtBdchfPSeu+TchbMrfLa/pn9EMQBIdhClEU8Un35jJTBEUWJM/PIGYpoAPg5D5vfuufC4NOBF4+cOYOWoqnrwcNOtV2a+z714LZ+/ehONlTRr2JG2dvc+3YLSpWTJoSqMyb5b127ME3HvK/GsPQReltRTBKkQNLj9N5RFvaD0453ZHoZ9H0rjCYsPtP7CqMJ7ad4cze8+TIkosKDUsnatxfe8xi/z+HXRbJvECSJCo2LhPv++5fDUahVPKqI3mBzdk7fziYjGbSZfUHbO3pvpnZg2m957ll36toPDV80KU2mXM7X4HkL52HuWd+Y/uGneTPXYDsBbPYi7Ee3wtjyciVHF5nkzSOeBJF5abl4nXsTXrUZ++qww43ZiXc+/ySguAzEFQvqnDvs/DnnM+demwMMQYW/LCC+p/WcmtVdMxJSAtsYmVBuy5DnySZLvOGea8d+/BWEwh/9Azp+czUarZiNFtZOno1JWsWo3i15En7Syhrpm3mSXC43am/wGQwM+mLWSy7NSvBYYtHd0PZ+/cht8raNZ4aaretSrb8WeJ9b+bcGbE66QwkiAL5y+Th+ulbcVYHoiiQt2QuMmRPx93L9/Hw8aBhlzpky5eZZeP+5cbpW/hl8iUgkz+ndp2z/45exzeDD5/+8DGt+jZxaqPJaEIURRRKBemy+ZOv1EuH/fTxM3pXGExEWKR91XHv8gPGd5pK3xk9aPSZ83TE4tUK0/CzOmxfssd+fwqlbTN2wPxeDnukSpLEuf0XuXz8GhFhUYTeD8OoN1GxURnqtHevmtZisbBr+QHWz9xKRGgExao1p/3gVlwP+g5w/LsIf/iMqKfRbskPx/e3lQqUG2Ti4b117DfO3ibk5iOHDsOoM/LvlI0p5ti3/7nPYRERQOSTKO5cvOeyHN8RQfsvolQpnDp2URQQFCKePh60HdicT75r6da4+cvkIXPujNy5dD/OZ6nWqvhyYhe2zNvBnpWHMMQYkSQJrZcGD28tZeoUp02m7litEhaThTzFc/Ddwj6M3/yDfYyQW4/4ouS36KNjp/UplCKVmpZj1NrBTm07u+8CcwYu5trJmyAIlK1Xglo9KsEr0ax/p2wi+ll0nFCSIcbI7AGLafBpLaebuoIg0Hd6d6o2L8+/0zYTdv8JWfNm4tHdUH7+dCoAuYrloNekzylbryTPQiMY1GAUD66HYNAZY31exzafZNHwv/hiTgeXn7fFYmFE64mc2R1kf5iE3HrM/tVHUagUzhtuSxJqrXtSBZU/LMe8wX86PKb11lKiXhG3xpFJOd5bx/7w9mOnX1hJkrh/LSRZrmPUG9m/+ijXTt8kQ/Z01OtY015m7gyz0XnjY1EUMRkS3hhZpVW7nIlVbVmBQYv6ovXSJKj7lSAIjF7/Pf+rMYyoiGiMMSaUagWiKPLZyHYUq1KIopUL0rh7fbYu3EVkeDTlPyjNo7uhrJm6KdZM/urJm/SrMYxBi75GkiBjjnSICpHBf/ZlWq+56GMMCIKAUW8iXVZ/VBoVu1YcoObHlePoq5zadY4fm//8SlGSxMkdZwk6eIlSpUvaRc/2rjzs9PO0mK1cP3OLQuXzu7z/io3LUrFxWW6eu8031YbFegjdPHuHH5v/zKj137N01CruXLyH2UFK5wtph79+XE/9D52vEg6tPR7LqcNzuYUYAyqNCqVKEWd8URQo37C02zpAWfNlpkGX2uxcuj9WmEntoaZw+Xzkr+g6RCWT8ry3jj1HoaxOHaioEMlbMleSr3H74j0G1hmBQWdEF6VHrVWxYOhyBszvRf2ONZ2eV6lpWbb8sctx70xRIHfxHAm2pULDUk43J7XeWhp3rY+nT/zNmh2RNV9m/rw5kz9/XUF0sJGATH580KU2WfJkstksCBSvVti+AtJF62mbuYfD2LQuUs+Y9pNBsm32igoRhVKkePUitOzdiL8nruPm2Ts8vhPKo9uhHN9yisXD/2ba4bGx5Ammf7MgVqUp2JJmjDoTC3/8ix//HvDcNld3lrDepH/8sAJDTNxiJ4POyLTe83h8L8yhU3+B1WLl3oUQHt0NJVPODA7fs2nudqeb3kqVAq2Xpz2fHmzVxB7eHvSd3sPt+wDoN/ML8hTLwV8T1vEkOBxvfy+a925Ipx/bci7obILGknn7vLeOPWfh7OQvk4fLx6/HWb6q1EraDGiepPGtVitDGo/hWWiEPQvvxZdt0hezKVKpgNPsm/aDW7Nr+QF0Zl2sDD6VVsXno9slSv3Pw9uDPlO7MqPfglibk2oPFXmK5yRPiYSFdl5HrVFRpnFxt7J2bpy57VKz/NUHmtViU588u/cC10/fwqg3xXLYuig9JsNjJn0xm5FrBgHwLDSCB05WXJIkcWzzyzTOOu2rs3LieochKpVaGSseHx+ndpx1lnFJ8I2HaL00GHWux1CoRMJDnjp17JHh0U7PFUSBXpO7EnLzITuX7cditlCrTVVafdM03lXi64iiSOtvPqT1Nx9itVoT3MNYJmV5bx07wE//fsfAej/x+G4YBp0RhUpEQKDvzB7kL50nSWOf3XuBqPBoh190q9nChllb+eq3zx2emzl3RqYeHMvkL2dzJfAGCoWIh48HdXtUpdXXTRNtU5Pu9W2z61GruHH29vMlvJE7F+/Rvdj/yFc6D0OX9SNrvsyJvsbr6GMMPLz9GL8MPvb2e2qtyulmqDOsFiuR4VEOk2zMJgvH/ztF9LNovPy83Nj8EzDqjUQ8iaLZVw3ZPH8nEaERWMwvVzQaTzWfj2nP6skbuXz8GjEROiSrRKY8GWnSvT5FKxd0OK7zi+I8/v0KFpOFrPmdf/7lPyjFzXN3HD6ITAYzpWoXo2776nQY8lG813IX2am/eySbY58wYQJbt27l/v37bNiwgUKFnOuEpBYCMvszP2gyp3YFcfnYNcKjntDp20/wTZd0dcOQm4+c5oGbTRbuXLzv8vw8xXMy9eBYIsIi0UfryZAjPadOOU9De53Lx6+xcfY2Ht8Lo3j1Inz4ZQPSZQkgQ/Z05Cmekxtnb6OL1iNZJGIibNPIK8ev8U3VoSy6+jtevp7u36zDezQzb9CfbJq7A1EpYjZaKF69MIMWfU3+Mnnw8NHaJXndxsWzQKlS8iw0Ei8/L3zT+5CjUFZuBcVtLi2IAv6ZfGmdvivC85/rtKuOQWfkwL9HMBst5CmRk3odajB34FIsZkscJ7pr+QEad6tLn6ndYjnzys3Kc2D1EYe/93SZ/UEAg+6J0/tQa1UUq1PQ5d9fy6+bsG7Gf3Fs0nioqdm2KumzOi+oep3oZ9GEBT8lfbaAJP++ZVIXyebY69evT5cuXfj000+Ta8i3giAIlKtfknL1SxIYGJgsTh0ga/7MTkvVlSoluYu7F/rwTe+TYBndhT+uYPXkjRj1JiSrLb1u1a/r+XTYx/w5ahUmoxmrOW683WqV0McY2LZ4D637Jn5lADCx60wOrj0aK2xydu8Fvq48hEWXpzJwQR9GfjwRo87oNHyREKxWK+mzvXRqX//enR8+HBcnJ16ySgTffBTLue5asZ9SNYuxKWY5VqsVk8FMu2xfxMnEeYHhuTZNpSblqNSkrP317uM6ErjtjE2g7DXnHhYcjsZDjYCAykOJUffSMdv02ZWUqFmUlj80cHmf6bMG8NuekYxtP5nQ+09QKG2ZTvU+rUnf6d2dnqeL1nP+4GUEAfKWzMWMfgs5vP4ESrVts7XWx1XoN+sLu/KkzLtNsjn2ChXkSrRXKVmzKL7pfdBHxxVQUihFWvRq9Eaue+HIFVZP3hTLodli+ybmf78s3vP10QaObzmVJMf+8PZj9v97BNNrKZtWi5WYiBh2/LmP5r0aMXnfaP4ctYrj/512mQlkR7DF8l9PBdV4qGnSrV6srI/StYvzy/bhzBqwmEtHr8Ye57UHiVFn4tyBS1wJvEHhCvnZu/ZQvKEifbSBNdM2xXLs2fJnYcbxn5nWex4nd56LdR3JKtk3PUVRpN6nNfFL7026rOnw8vWgRM2i5C2Ryy099gJl8rLg4lRuX7hH5JMochfP4XJCsvLX9Sz5aaV9X0MXpUfA9iB/MfPf988Rgm88ZMqBMamixaBM0nivY+xvElEU+XnrMAbUHoE+Ro8uUo/GQ40EfLfo62SNY7/KhllbY3UsSgze/l5JOv/c/osolQpMxI0D66MNHFp/gua9GlGwXD5GrR3Mvn8OM7bDZKwW1860WNVCVG1egT9HrkJUiEhWCQmo0LgMX/7aJdZ7718L5p/JG7ka6FzS4FWMOiPDmo1Hslrx9PV0q/r1xtnbLB/3L8WqFqJ0neIIgsD107c4f+gyAgKSk5iLIAhUblKWei4yo+JDEATyuLHq27p4N0t+WhknA+l1y0wGEzfO3uH8wUuUqFE00XbJpA4EKZn1OOvVq8fs2bPdjrEbDAaCghx3y0kLmE0WLuy9SvDVR/im96JUw2J4+b+55e7cr5ZzIzDxqoJqDxWdJ35Ewcp5Ez3GuZ2X+Gf0ZgzRjp2jp78HmfNlIF+5XFT5uCye/h5MbD2HpyERTsfUeKn5fkNvPHy0RIXHcHH/VcwGCwUq5iZjntiNsUPvhjO9yyJbQdQbFKwSnofaVBol6XL48/mkNkz6ZH6sMIszan5aiSZ969iFxxJDZFg022bt5cy2i5iNZrIVyUKTr+uQv4Itk0eSJH5uPotnD51/rrFvCD74sib1eyRvP1mZN0uJEiXQaGLXKKQax+7IuLdNYGBgkkS23jTu2PfH0GWsnLgu3tmvI7ReGio2LsuPKwfYl+MWs4UH10M4s+cCSrWSKs3K2bNbnNkXE6njkyw94uSRv45SrUSlUTFxx3DSZwugY+5eDh2xIAp8M6MHzXo2dDjOo7uhLB7+Nwf+PYrFbMHT14OnjyPeqFN/HaVKQc7C2Qm5/chp445XERUCHt4etB3Ygg5DWtszT9z9G4wIi+TLMgN5+vBZrGwbjYea75d+Q43WldFF62kd8FmsbB+X96BW0m1MB9oObOHyfWnhe5LSJIeNrnynHIpJY/hn9EuwUxcEgbylc9OmfzPqf1oTQRAI3H6GOd8t4eZZ2+xfVAioNCp+7yPR6cc2LtPpJEkic95M3Llwz+V1zUYzZqOZnz6aSN/pPfDw1tozdGKNZ5U4sjHQoWN/fC+MXuUGEfX0pSxAfA+UhKDSqNzS1zGbLNy5fB+FmzNwq0Ui+lkMK8avIfReGP1mfZkgu/6dtvl5imbsFEqDzsi0PvOp1rIiao0KUSG67dhFUaDGx5UTZIdM6iTZElTHjBlDrVq1CAkJoWvXrnz44YfJNbSMm1itVlZOXOf2+9VaFZlzZ2TO6YnMOTmRDzrXRhRFDq0/zohWv9idOtgc0Qud9WVj/+XAmqNOxx3eagL3Lj9w247oiBhunLvtMjvGWbXlkpErHWq9uIurhiMAAVn8UCgVbm0oqjWqBHcaMsQY2Lp4D6EPniTovF3L9zuVQtBH6bkVdBeFUkHNj6u41cBE66WhVd8mZM37ZvZ+ZN4uyTZjHzZsGMOGDUuu4WQSwZPgcKKeOq9MfBWNh5pxm4dSslaxWE5LkiR+7zPf5azXEGNg6eh/qNE67uzu+NbTnN1zIUF2C4JA+mwBTjNjNJ4aqrZwnHV1YPVRt2ekr6JUKfh+6TdEP41h+jd/OHWSj26Huj2mxWIlT8lc3Dp3J0F6PgqlglM7zvFBF/f00gHXDzLh5fGvJn3Ouf0XiQiLtG8Iazw1ePpo8c3gQ9iDcLLmzUS7wa2p1aaK29eXSd3IoZg0hNpD7VZzDI2nmn6zvqRU7eJxjt2/FkKUi7L1V9/niGm958Vv6GuYjWZK1y7OB11qs3PZvlgZKaJCxNNHS+OucYWx7l0NRhcVT42+AzSeauq2q061lhUZ0nhsHHnkxCAqRPKXzs34/4YxruMUTu08h9loditHXxAEFKqEtQWs2KgMm+btcLiPoFQp7VpHAZn8mHduEv/9sZPdfx9CEAQadK5Fw8/q4OGlTdA1Zd4dZMeeSokMj+L66Vt4+npQsFw+t0IBvul8KFguHxePXHF4XKG0dQr6bGQ7yjUo5XQcd4IJ/q8Ibr3gacgzQu+HuXH2qzYpKFW7GNnyZ+GbmT3wTefN2ulbEAQBs8lM8WqF+WbWF+xdeZidy/YjSRJ12lWnaJWCDKz3k8vZukqtxPrcs/pn9CVrvsyYJBOFSxekQNk8bJi1jUvHrrl3wy7QeKjxy+jLjyu/xcvXk7Ebh/LozmMOrw9k1rcLsZhcrygsJnOCmnLcOn+XXSsOOHTqag8VX/zSKVb4xcvXk4/7N+fj/knTP3pXCLn2iKE/juPkzrMIgkCFRmXo8fOn5C6acPG8dxXZsacyLGYLM/sv5L8/dqHSqLBarHj5eTJkWT9wI728/9ye9Ks+DKPOYHd6Ko2SgMz+TDs0lrP7LnJq5znuXLxP3Q7VYykiAmQvkAWfAC+Hyosv0Hiqad0vbgFTzDM9SrUSszF+TZQXFK1akGHPlRYVCgXdx39K5xFteXQnFJ903jwLjWRArRFEhkfZxcGuBt7AKkmY9M7DRRoPNUOX/48y9UogWa0Y9Sa+qz+S4JsPuXbsFiq1En2MIclOXaFS0Lh7PXr+2iWWOFumXBlp+XVjBBHmDFyCJEkOwzNaLw2fDmuDT4A3z0IjOP3fecIvRlOuQUmn/VbHtJ+MLtLBSkWAxl3r0aRb/aTd1DvM9TO3mNntT0x6k321dHTjCc7sCeL3w+MS3MfgXUV27KmM2d8uZuvC3Rj1JnuFpS5Kzw9Nx9FnyWexmkQ4Im+JXMw5PZG/fl7L0U2BKFVKGnSuReUPy/NVue8wxDyXEPZQM2/wUgYt6kPtT6rZzxcEgb4zejCuwxSHcXaNp4YydYvTsk/jOMfS5wzAkgCnrlAqeBL8NM7mnlqrJkehbPwzeSPzBi2Jk+Wjd/HQecHQ5f+jWsuK9p+HNBnKvSvB9iwSR5LIiUGpVND8q4ZOFTdb9G5M1RYV2bXiAGEPnhD24Aln914g+lkM2QtkpfOIttT8uAqLR/zN37+sQ1AIKEQRs8lC814N+eq3z2Kt1u5deUDIjYeOQzwSXD5x3aEdVquV+1eDAcheMGuaFfaa+b+FceoIJMm2oTx30J+M3Tg0hSx7u8iOPRUR/SyazfN2OOyeZDSY2PfnERp/9EG842TNm5n+c3raf7ZarXTK25tnj1+REH7utCd2nUGhCvljVcJWa1GRkWsHMW/wUq6fvoUgCqTPGkDRqoVo/lVDytQt4TA0pPFUU7VlBfatOuLW/VrMFkJuPWLlxHV0GfFJrGPn9l9k0Y9/JSofH2Dlr+soVq0Q/hn9uH3xHjfO3nZLXTEhKJQihSrkdzoLNOqNIAhkzJGedi46Um1bvIdVv22Ik1a5ed4OMufOyEf9XmaYPQuNRKFWgpPN7WeP4xYjHVhzlOl9/yD6aQwI4OnrwdfTulPz47S1WWo2mQk6cMnhMUmCE1vPIEkJ09h/V0mbj+13lJvn7qDSOH7WWi1WrieyovTMnvNOJYQtFisbZm+L83r5D0rz+5FxdB3TnnRZ/HkWGsndi/eJCIty+cUYvLiv03twhNVsZenofzj+X2zlyr9/WesyHBQfl45dY1CDUUiSxL3LD5433E5ePHw8GLl2UJzXz+2/SJ9Kg2nu05nm3p34tu4Irp+55XScpaNXObxXfbSBFePXxEqhzFkkWxwNnheIokCRSgVivXZi2xl+7jSNsAfh6GMM6KMNPAl+yoQuv8f5zN91JEnC1W61JEkJTkd9V5EdeyrCy8/T5Wagh0/ishiCbzzCanU8rtlodlhIZLVa+eHD8Swf+y9hD8IxGUzcOn+XiV1nsHT0KqfXUmvVDPtrAKKLRhqvI1klxn86FbPpZQz6bgLy4B1hMVm4fy2E/auPkDFneqcNt5NCuiwBcZpDn9l7niGNx3DlxI1YTUL+V/NHbgbFfTBL0nO1SSdEPomKpTLpm86H+p/WROOhjvNelUZF++9bx3pt/uClDkNqBp2ReYOXxnuP7xIqtYqCFZy3MSxVu1iaDUG9zvtxl+8IeUrkwt9Jpxutl4Yqbco6PBYfWfNlcvoHrVQryVUsbrbAia1nuHj0ahynYIgxsHzcGp4+fuZwvHP7L/LH0GUJ3pS0PHeAL8hWIEvCBnCAUWdkXMcpTP5yDv6Z/JJ1CS6IAvlKx+2uNPN/Cx070mg9C4Yut/984cgVxnaYzNeVh6B0UUCkUClQv+bE+87oQdWWFVFpVHj6euDp64GXnyc//NU/VoMYi8XCjbO3nY59K+hurIdpWqD35M9RaeOuzjSeGr78pXMKWJQyyDH2VIQgCAxd/j8GfzAKk8Fk74+p9dJQuGIByjUt4fL80AdP2DJ/J7cv3CNX0ew07VGfDNnTU7pOcbz9vdBH6+OsVBUKkeZfxS3V37lsP3onjTAUKgXHNp+i4Wd1Yr1+72II875akagQitVqJfpZjP3ntt+2IGjfRbc2Sl1hMVu5fvomWi8tPum80cfoMepMKFQKJKuU6IpVQRC4fyWY0e1+o2rzCqTPlg6L2cLt845lFCQJArefAWDF+H9ZNnY1Rp3JFhpw8rxRqZXU61gDheK1zWWNih+W/49Hd0O5fOwaHj4elK5TLM4GriiKiErR6UaxqBCTJEKWGilWtTDdp7dn1+xDXD99C4BCFfLTe0pXl03J0xqyY39L3Dh7m/mDl3JqdxCCABWblKXH+E/JWTh7rPcVrVyQuWd/459JGzi18xxefp4069mQeh1rcObsGafjH9kYyJh2k+wa2yqNkpW/rGPIsn5Ub1WJ8VuHxW6s7aEGSeK7hX0cSgibjC70UaySw6bMW2fsSXRcXB9lYGLXGSwft5psBbJQsXE5Wv+vKasnbcRqsWI2WRAVQqI2UyXJFnJq3L0eoq9E1D09AZn9kSSJvyesdXsclUYJErZGJRYrV0/e4OrJG/bNYqVGGc8GrcDdy/dZOmZ1bGllB7ek9lCTJU8mvnpNjvhVMuXM4LQ3KtgePtVaVODgmmNxCtdEUaBK8/IJDk28C3HqPKVzMOPYBHTRegRBQOuZsuKCKYHs2N8CV0/eYEDt4RhiDPYZ8+F1Jzi9K4jpR8fHce5Z8mTi62nOu+G8TmR4FGPaT44VAniRMz3+06ksvzOb3EVzsOzObA78e5QbZ2+TIVs6h3nsL6jRujIn/jvtsH2d1WqlXIOScV6/eSpuK7qEoIvSc+3ULa6dusWh9Sfw8fdm3OahnN1/kajwaPKVys0fQ5cTHvI0wWObjGZObj9Lr8Wd7Kp6B9ces82W4/FTag8VbQY0R6VSsmzsaqfvM7uQERAEgcoflmPboj1upVqKosCYjUPw8nNdvGCxWDi2+RQ7l+7DZDRTvVUl6rSrhlprC9/0/PUzzuw5T0yEzv4wVqgUePp40NPFQ+N1bl+4y9xBfxK47QxWq0TZeiX54pdOFCiTeHlnZ0iSHilmFehWgqQDdU0E7x4Iiuzxn/wK73Nlbdpah6VSZvRb+LyT0svXJElCF6l3q6tRfOz56yCuvNOuFQcA2xK+Xoca9Bj/Ka36NnHq1AFqflyZ9NkCUL5W6q7x1FCrbVWy5MkU55zkXNabDWaePnrKrAGL6fxjWz4fZauWnX50PD7pvOMfwAHa177oGbKnc7gJ+Sq5i+fghxX96Tq6AxpvbaLuURAEPHy0dB/XkfCHT91KuzSbzKybscXle0xGE4MbjGL8p1PZu+owh9Yd5/e+f9CjxACehdrSHjPnzsicM7/RvFcj0mcLIH22AJr3bMjcM7+6Lfh1+8Jd+lYZyvEtp7CYrUhWiZM7ztK/5o9cCXScN59YJEmHFNYeIieC+TJY7oBuJVJoMyRTwjSI3mdkx/6GMeqNTkv8JUni2Jakp5w9vhfmtOOPQWfk0R33haxeoFKrmHpoLDU+qoxKo0TjocbTx4OP+zdj4ILeDs8pWb+Ivf1aciBJtuyYwY1G83HGbnQt8g1flBxAtvwJVyDUeGpo2iN2RWahCvmdPty0XhpGrB7I/HOTqdbCVuj06PZjhzUG8d+HRK5iOcmcNxNhweFunWM2Wji45pjL9/zz2wYuHbsWa1Wlj9Lz+G4o0/rMt7+WIVs6ek/pyl/35vLXvbn0mdaNDNnTOxrSIXMH/elwf0YfbWBW/0Vuj+MOUvRSMN8AXt6TQWdm1UwPPi/yI22zdGdE61+4etK9zljvK3Io5g0TnyiX5CQN0V0kSSJ7gaxovTQOpW09vLV2QaiE4pvOhx9W9EcfYyD6WQx+GXxQqpz/yTTsVYtrR24R9TQm2YqBTHoTp3cGxUrXvHHuDqIouCV4BjZ5gdzFctCgS23OBZ21vy4IAj+uHMCgD0ZhNprt4Sutl01NsnqrSvb3Rj+LZt9q9wqvHHHpyBVaB3yWoPi0q88aYN2MrQ4zcMwmC/tXH+HWhbvkeV48FROpY+vCXez75wgKpYL6n9bCZDSxZupmQh88IUvujHQY0pq6HWrEUfsM3HbGaXr4hcNXMBpMqDWOK28TjO5vXnXqRoPAwI8KcOuyBqNeBCI4vP4EgdvPMHzVwFg9Z2Ve8s46dkmSuHX+LvpoA3lL5kq1GyRaTw15S+ay79C/Tuk6rjNdnGG1Wvnntw2snLiOyCdRdrGr11GqlUmWY9V6atz6fP0y+TD79K8sH7uaTXN3JDrj5FUcbdaZ9CZ7W7r40HppqNehBl/+2sWh8ylSqSDTj45n5cT1XD99iwzZ09Gs5wdUalouloNb/NNKh1WdCcGdPqovUGtVlGtQkrEdJnPp2DUCMvvR+psPqf1JVfuGZ0RYpNPzJavEN1WHMvPEL3j6aPm68hAiwqLsm9vnDlxEsrz8bG+dv8vknnO4cvIGX/36Weyx4nsWJedmqhQT68cdqwK4c0WDUf8yJChJtt4AE7vO4O8Hc9+b3PSE8E469jN7z/PLZ9OJCItEVIhYLVbaDmxB5+FtU2W5cO8pXRnaZGyc2ZXGU0OPnz9N1JiTesxiz8rDcbJQBIWAQqGwh09+3vojGo+399DLkC0d38z4gm2L97rMkEmfLYBnYZEuNxxdoVIrkcBpFeYL9NEGti7aw77VR/huYR802V86AaPBxIxvFrDjz70o1UpMBjNefp7kK50nzt+Ru5ueyYFSrcTDx4P/Fu7CZDAjWSVCbj7i5rlZHFx7lB9W9EcQBFQapcvuTrooPXMGLkGlVvIkOHZs3+qgEE4fbWDDzK207NPYHn8XBIHSdYpzauc5h9fw9vfEkgwPcDuqCmDYBtjG3LIsPXqd4zx/g87AlRPXKVKpYPJdP43wzj3qbp2/yw8fjufRnVD00QZiInToow2smrie5eP+TWnzHFKqVjHGbh5K/jJ5UKgUKJQKilQuyK+7RlCwXL4Ej3fvajC7/zro0HGqVEqadK/HkKX9+Ove3FgFK28Ko8HE+plbmdz+Dz7N04ufu/zucoavUCnIUyIXWk/XG5euEBWiQ+fkCIvZQlR4NOM6TuHexRAMOgOb5++kQ46ebPljJ0a9iZgIHSaDiXP7L/JN1aFx8ucdZQe9isZTTZ7iOfD0TVyjckEQUKqVaH00NO5WF6POaMtzfyXcpI82cHTTSU5sO0PogyfxrwAkOLY5kMMbTrgdGpOsUpzY/pe/dEbj5PcZE6lj5EcT3RrbHQTv3sDLaxl0zidqgiAmaBX0PvHOOfblY1c7lGvVxxj4e8Jam/DSW8JqtXJq1zm2LtrN+UOXXcZPS9cuzuyTE1kZPI8J24bRd3p3CpZPuFMHOO5iw9WoN2G1WKnavIJbLdGSisloYlD9kcwdtISH1x/z6E4ou5bvt2dlvI4gCkgWKye3nyEqPMbhe9zBarFSq02VeLNaXsWoM7Fj7n56lR/MjH5/EBEWGUfT3GqxEvU0ml3LD8R6PbeD6txXkawSUw6MoXG3eu7fxKvnI6HxUFOjYyUqNi7jNNSkjzawZf5O7l8JjretH9haGiZkEWuxWOPICxcom5e2A5o7tMlstBB04BI3zzmvcAV4dOcxJ3ee4+7l+y7fJ6iKIATMBjEzCJ5UrK9HqXb8ALeYzOQrk5sLhy9zbMspwh8+dX1z7xHvXCjmzN4LTjfNBFHg7uUHb2WWevPcbYY0HUdMRIzNOQgCGbKnY/yWHxymAgJsnr+Dud/9+TxuDCq1gr7Te1CnXfVkte1thqN2/LmP62duxZo5OWoAAbZZrVFnsu8HCIKEJCXcVo2nhs9GfULLPk2Y/OVs9q48jNVijXdWKkkS147fAklw2oYPbM7z2OaTsbJoOgz9iHEdpjg9R6lWcmbPBbdbE8Y1DqKfxbB38WEeXQx1OUmIfBLlspXgqxQom4fHd8N4ZnAej38VlUZFuQ/iNmG5c/m+098rQNCBS+QtGVdiITI8irHtJ3Nu/0VUGhVmo5lcRbMz/J+BTr8ngqYqZNwH5ot8NPAxW5b/gdkYW39e46mhWssK9CjWH120HlEUMepN1G5XjTpfVXI47vtEss3Yb968Sbt27WjUqBHt2rXj1q1byTV0LDy8nRcdWEwWPH0StxROCLpoPd/W/Ymw+0/QRerRRxvQR+l5cDWYgXV/wuJAcGrP3weZ+b9FRD+LISZChy5SR0RYFL92m8nxracTdP3KH5ZzekzrraVmm6oJvaVEs3HOdqeNpl9FEAVK1CiKqBKp2ewpf+y/yJZ7Z1l37Sx9f76HWutG0Y5CJF/p3Axd1o+2A1qg1qgYvLgvy27NpOMPH7k1ezcbLPE6ROG5tO2rbJwVVwHTEad3Bbn1PmeY9GYuHrnqvP+rh5oKjUqTo1A2chbJjuhiE1njoabnr5/x6bA2bm1+q7UqilUtRGEHQlpefp5OJwyiQkTr4HspSRLfNxzNmb0XMOpNRD+LwaAzcv30LVszGBera0EQEFTFyJi3NpP3j6FA2byotSo8fLR4eGtp3L0eh9Yd50nIU3SReqKfxWAymNi/6jBrxv8X772mdZLNsY8YMYKOHTuydetWOnbsyPDhw5Nr6Fg0/aKB0y9wlryZHJbHJze7lx9wuGlltUpEPInkxNbYpf+SJPHHkOUOY+IGnTGWOJQ7ZMufhfqf1ooT91RrVRQqn4+y9UrYr7v7r4N8UXIAzbw+5dM8vVg9eYPDma0kSUjG41gjxmGNGIdkPO5Wal6Mo04+DpCsEuEhT2nWOYSBU+6QI78RQQCtp0SjdmF88WMw7iiHhT14wvjO02iX/Uv61RhGy4AutMv+JTuX7ydz3kwJCs04Q+OpiaWDczPoDucOXHR5jtlooXTd4k5j0QlBVCrIXSxHHPEvsDUnadzdtpIYvupb/DL6xgnJiAqRLPkyMWL1QMrULUGrvk34qP+HqLUvRcPUHmoKV8yPWqtC66VB46Gm4Wd1GL1+sEObGn1e1+lnazFbqNo8brPxC4evcOfS/TgPKatVQhepY+/Kw259HnlL5GJW4C8svDyNqQfH8s+jPzAbzA47dRl0Rs5sveBUpO59IVlCMWFhYVy4cIGFCxcC0KxZM0aPHs2TJ09Ily5dclzCTovejdi5bB/3rwbbl/8KpQK1VsV3i75O1ms549Lxa05nqbooPVN6zqFCw9J81L8ZeUvkQh+t5/E9571Ar5+5leAGAP+b8yW5i+fg71/W8fThUzx9PWnRuxGdXskMWjTib1ZP2mh/oDy6E8ofQ5ezce4O2gxoTu22VfH290KSjEjhPcF0ylbCDUi6laAqCwFzEATnzrJA2bzcc1NiV7JG021IMFrP2A5cpYG6LcOZ81M2zCbnn4HVYuXZY1tIQR+l58krxT4Proag9lBTskYRArefdTZEvGi9NFRsXJbSdV42+t65bJ/LMIQgQqcfP8bL15PG3eqxeMTfsbVgEoggwIc9G3L+wCX2rjyExWzBapUQRAGLxUKPEv3JVTg7keFRlGtQimwFsnL30j180vtQuUk58pbKRcYc6e1/B4Ig0HV0B9p+24Kz+y7Y+8x6eGm5cuIacwcvJWj/Rbb8sYuQm4/oMaFTnHBmsaqFqNW2Kvv+ORzrb1/jqearSZ/j7R9X+uDC4StO1SN1UXpO7T7HB11qu/25ZMqZAZ73NDm3/6LT0JtCreDG2TuUqx9X9uJ9IVkce3BwMJkzZ7ar0CkUCjJlykRwcLDbjj0oyP0lbNfpbTi65jTH157BqDdRsHJeanepQpTwlMDAwETdwwvcOd+kMKJQiY6bFEsQev8J25bsYeeK/Xz0QxNK1i+C5GI2qlQpOHnyZILty1MzK4NrfoXFbLVXfL4owIkIjWLlL2vjzGpMBjP3Lj9get/5zPjmD9r+9CENW58lk/cxFOIrqxApBov+OI+uDiMksp1Te0yie6JfKq2S0nUMWMyOxVl80ln5alQw04ckTA/kVYw6I2f2XcA7nSdRTxK+MatQK9B4qzFYdWxds4OMuW1/uyf3uX5QeAV4UahhbgIDA8lZJSMB2XwJu/c00amcZpMZ7zwa6pWtysndZwkPts0+Jastf9sQY+TpQ9trty/cRaFU8MmoZpSsVwSQuPvoNncfOd7MtKV7Sly4dJ6HN0KZ2XWJLQ33+a/kxLYznNl3ga/mfUr2IrGlk+v2qUz6Qn4cWH6MiMdRZM6fkbpdq5K1bDqH35uwZ4+fSzDEdcCCQsBg0SX6+yq6WBhJFol7IXeQAlN3xkxSfZUrUs3maYkSJdBo3F/GVqleBX5NXhsCAwPtAlGuyJkxF/sWH3HZfd5qkbBazKwdt5UOX39M5ablOLrpZJyiHVsVYE23ruvIvoiwSHYtP0DI7cfkK5mLWm2rovXUsGnudhRKhdPG0i9eXz1qC/VrXkfhGze0pBCNZPXbSbaCE+yzv5Bbjzi3/yIaDzUVG5fhXL6rHOREvLarNWpqt64GwiGn76n7cQC5K49gROuJxDxLXMaMWq2iTJ2SHPj3aILPtRgtPHsYSeCGIM5svcSI1QOp2KgMm3Ps4So3nZ4nIsT6vRjHScwZuITQ+08QBAHJanVew/Pac06lVfHJwBbUaViLkzvOonumd7laePF3tnrUFtr1/jhBwlc/jBgXy6m/wKQ3sWvWYaYcGBPnnAoVKlC6YVG3/l4L5SvMhl93ODymVqvoNKgdeUskriq6w3c6Jn852+HK2dPPg+Ydm6bKmpYXuOtrXGEwGJxOiJPFsWfNmpWHDx9isVhQKBRYLBYePXpE1qxZk2P4VEemXBnpPbUrM/+3AIvRhMXy4tsZ9w9JUIjs//cYX0/rxoVDl4mJ1NnTyVRaFX4ZfOg2LnFFSgfXHmN8p6lIkm22qvXWMvvbxfyyYzgmo9mlQ3iB2WRh3QIP+sT9DtuQogATJqPAL5/P4NDaYyiUCgRBsM0s3RTkMhvNaPyqoHRSeW7Qi3hlbkuZAiXoNelzZnzzh1ubsnHvx0y1lhU5vTuIqPDEZahYzBYsZgtj209m1cP5FCyXz2Uf14iwKDrn74PVYsU3vTd3Lt63a8q4WqkB+AR4o1QpiHgSRdZ8manRqTyfDbWtkK6fvuW2No0gChzbdDJWY3JXSJJk2wtyYt75Q5eTLBXgE+DN19O7M+ObBS+157GFu1p93STRTh2g9idV2f3XQU7vOmf/O1GqlajUSjqOb5WqnfrbIFk2T9OnT0/RokXZuHEjABs3bqRo0aLJHl9PTTTtXpkZ/12jaedQ0mU24qxbgj5Kz5ENx/HL6Mu8oMm0GdCc7AWykKNQNjoOac3cM78R4KRrkitC74cx/tOpGGKM9niuPkpP5JMohjQaQ5m6Jdza/LSYLdy84MI5C/4IgprZ3y7m8LrjGPUmdFF6YiJ1GPUmnjxwT9TKZDRzcF0QVm2vWOXhAGazgEqbCdGrDQD1P61BvlK5E5R//QKj3kTGnOlZcu138pXOnaQvuCRJnNxxjrrtazhthvGCkJuPeHQnlGun3HfGAMWrFWZl8HxWhcyn5keV2fL7Htpm6cG4T6dgMprc7h9rNVuJeBLl9nXBeVrqC247aJmYUJp0q89vu0dS8+PK5CySnQqNyzBi9Xd0H5+4ycwLFAoFP/07kIEL+lCmXgnylcpNyz6NmB80iVwlsiXZ7nedZAvF/PTTT3z//ffMnDkTX19fJkyYkFxDp0ok3XpyFTTy9bhnFCypZ+aP2dDHOC4IOrblNP2qD2PKgTF0G9uRbmM7Jvn6m+fvdNrH1KA38eB6CJnzZIp3Y1NUiGQrmA+4zaviSza04NUdXZSOrQt2OxSccher1YrFZMUrSz+sMTmxPJuMyGNAgdK7KYLvEATR9oBRqVWM/+8Hvir7HcE3nPcDdcayMauZuGMEc079yoPrIfyv5o+J0nCXrBKRT6LInDsjhSsW4PKxawkeIz7uXw0mMjyKXuUG8SQk3L6a2/v3IQ57qN0XUxMEilZ2v7ReEAS8/D2drmoEUeBW0B0Klk263nrhigX4ceW3SR7ndRQKBbXbVqV229jpvXcfJ67pe1oi2dId8+fPz6pVq9i6dSurVq0iX77EVVW+M5hvAbYMktotw9F4WBEExzMgk8HE3cv3WTttc7Jd/u6l+3EqBO2mGc3cvXTfLblelVpJq/79QPsBoMX2rFcCWqzqBlw+X5tdfx1MUHNqR2g9Nfb8e9HzI5RZ9iFmOY2Y5Syi/0QEMfbqblb/xYS5uRp4nbN7L9hrCbLlz0J+B71J3cFisVLoeU73oEV94p21J4ZHd8OY890SwoLDY/0+rVYJfbSBgMz+aDzUKFTOq4iVaiUFyuShQAKdcLGqhZweU2tV+Kb3SdB4Mu4jSRJXT95gz98HuXj0arJ3pUo1m6fvGoIqL5LeAyQdWk+JSWuvMaxTXoJva3DkAYw6E5vmbo/TRT6x5C6WA7VW5XDZr1IrbSJRaqXLtDu1VvW8C04+4Dck8zXQ7wbg1OFcTPjsH3RRY0AQ0EW61kpxhSAIFK5YgOLVCsd6zfYgiUtEWCQ7l+13KXDlCkmSYsWOm/VsGKe2ID5UGiUlahQhVxFblk6uIjkoUaMI5w9cSlYxQ4VSZP8/R5wWJD199IzxW4exd+Vhbpy9jV96b66dusWz0AgUSgUmg4lStYrxw1/9E3ztDkM+4vSuICd/QyrKO6hATQiSJHFmz3k2ztlG+MNnlKpdjOZfNSRdloAkjfuu8+huKFM7LuBpcASiKGKVJNJn9WfMxqHkKJg8+5KyY08s2ua2Li/PyZHfyMjFt+jbpCAGJ2p0MUlwjq/TpEcD/pqwzuExjaeGcg1K8eeoVU7PD8jiz7RDY2OVdQvKAuBdgNsX7zG89feJ7l/6OgUr5MM7wIuOuXvhm86bFr0b0bhbPSRJ4tz+i+ijDRSpXNC+13Dz3B3UWlWiHXuxqoVj6eSE3HqEQqlwK6yhUCkQFSLl6pdk6PL/xTo2aNHX9K08BF20IWF56i7a71kt1ngbdqfLEkDf31+2SpQkiRtnbxP2IJxcRbM7Lc2PjxLVi9D0iwb8t2DXyw1IlRKFSsGwv/vHqwfvCkmSmNp7LjuX7rePfenoVf6dvIlfdgyncMUCiR77XcZisTCg9nAe3QmNtcfx4NpDBtT6kaU3Z9rbGiYF2bEnEkH0Bf85SE97Ptej1pEtjwKFkxWzILhe+iaU9FkD+PHv/oxuNxkBmwiah48WlUbFhG3DyFMiF34ZfNFHP45zrsZTTecf2zh1CH/9vCbRTvVVVBoV6bL4cSvoDlcDbyBZJULvhTFrwGLWz9rKo9uh9n0Ck8FMg8616DfzC7wDvBLdqENUiHz1W+xenmd2n3d7vGY9P6Dtty3InDtjnGNZ82ZmwaWpbJ63k4Nrj3L7wj2XKxm1pxqT3uR0mS2IAgGZ/Qi59djpe6xWK1nzxf49CYJA/tJ5kkUTqfeUrlRvVYm107cQdv8JRSoX5KN+Hzqt4JYkibB74dzxuk/2glnstSuvc2LbmVhOHWwb20a9iZ8+/pXlt2e9l5krJ/477VB8TpJsobd9/xyhQadaSb6O7NiTgKCpDBkPgH4zkuUuat+8tPvexIpxG+LMwtRaNZ1HtE3W61f+sDx/3ZvDnr8P8fheGLmL5aDGR5XtKWrfL/2GIY3H2BUfwebU85XKTSMXKoRB+y85bZKh1CiRLFYsDiRzBQEy58lEeMhTPHw8aNytLhtnb8Ooi/2QMMQYuHEmbgHNruX70Xpq6DX5c/wz+RFyM+Ebp0qVIo4+t18mX5uqpBvpnyqNyqFTf8GT4KdEP4tGqVa51JwRFSJmg/l5Hnvc66o0SnzT+9D++4+YPWCRU1lg/0x+Tp1nciAIAmXqlqBM3fgbvpzceY7JX84m7METFEoFGk8NPX/twgedY1ePSuZb8GwYM7fdIjpCwYbF6dn5T7rnxWkQ/TSai0euUKxqYQdXSdtcPXnT6e9aF6Xn0rFrsmNPDQiiN3h+Yo+qdxgiYTRI/PPrBhQqBZIkofXUMHBBHwqVjyuulFS8/b1o1vMDh8dKVC/CrMBf+GvCWk7vDsLTx4NmPRvSuHs9l/nJ3gGecMvxMQEBpUaFxew4fFCsamGGLP0GgNO7g1g/c6vb92KIMbJ53g4+H92eYX8PYGDdEQnOZTc7aIbRtEcDdq9wrF//OrtXHKDnxC5xXpckiTkDF7Nx9nZMRnO83aHiO24ymvl4QDPK1ivhfDUhQIVGZeK1+W1w6dhVhrf82S7jYTKY0UcbmNprLkq1krrPFUol4wmkJ90pU02PQml7oPUefZ8P2oTzffv8WMwCgkLkaRK7Ub2r+GXwQeOhdqgjr9IoCciS8NRnR8iOPZkRBIHPR7an3XctuXryJhoPNQXL50ux9l05CmVj4B+Om087o/lXjZjZf5FDR+gT4IUu2vGMQ5Lg8b2XmTjxNadwhEKl4N6VB9y9fB+L2WrvkPUCtVaF2WTGanE++369sKZo5YI06V6PTXO3O80keoGzWfjh9SfYNHdHklI+YyHBomF/UfOjKhSvXoSg/RcxvXZthULEoDNyYM1Rnj6KwKg3Uqp2MQqUSXoKYkJZ8MMKh87IEGNk3qA/qfO8MEp6+i2gQ/GKZ/HwkihYOob6bZ6w7a/0mA0m8pVKXKbSu07tT6oxe+ASh8cEQYiz+kks71yjjXcFD28PStUqRuGKBd65nowNP69DkYr5Y6kG2tq1afmo/4cuZ9FBBy7x08cTeRISTpHKBeM4q/gwG81EhEUy5cs5mAymWE5dEAXSZQnAL4Ov0/NVGhVBBy7Feb33lK4MXfE/lymLoihQvmFph8dWTlyXqEpYV1itEjv+3MePKwdQsHw+NJ5qVBolosJmpMVsZffyA4z8+Fd+7zOP+d8v4381hjG44WgMuuS1JT7OH7zs9NjTR89sM3DzRZAcqyp6eEl82DkMlUZJ2folE73h+67jm96HAfO+QqVR2vWdRIVok1j+7TOb0FkyIM/YZbBarZzYeoady/ZjNpmp3qoSozcO4cDqo2ycu43opzGUb1iaio3LMLLNby5j1S9aqx1ef4Km3etTvXUlDq09FifO7ghBgJyFs3NwzTGHqoCSVeLx/TCXvUcVSpEHV4M5uimQh7ceU6hifpp0r09AJj9qtKrMJz81Y/WYLQ7HUHtq6PRjG4fjPrwddxM6qZiNZsKCw/EJ8GbqwbFcPXmD33rN5Nbpe/Capr/VKmF9vqEddOAi0/rM57sFfZLdJmeoNEqn+umSVUKtUT6Xn3C+H+Dta6VU7eJxso3eN+p3rIlRHcOVnbe5GXSHnIWy0eqbpsnaIEh27O85JqOJH5qO4+Kxa+ifh06ObTnFn6NWMfXgmFiyqj80G2d/T3xYLVY2zd+Bl68ntdpUZcef+1y+39Z8W8OQZd8w5au5DjdngXgbSuui9cwasAiL2dZR6fh/p/hr/BrGbR5KiRpFKde0BLWb1mBa73lcPXkTJAlBIZK3RC76z+1JzsKO1SVzFM5G6P0nbt27u3h4aylW5WWmVP4yebgb9CDeezTqTez56yC9p3TFy9czWW1yRt321dmyYFcc2wQBilQuiJefF5K1CEiOnb/VqiAgRyN+/m/Y2zA31ZMpbwaazGr0xsaXHft7zj+/beDC4SuxYsf6KD0hNx4yve8Chi7rZ3/95A7HneqdIVkloiNiePYogmLVCnPhkOPlvNZTQ5uBzWnRqxEBmf3JUSgbFw5fiXcD0uE1LRJGy8vVga34xsSwFj/Tf25P9m04RMFi+Rm+6lsy5EjPozuhaDzUBGT2jzXOtdM32bpgN08fP6NU7eJ81K8pF49cTbbcfkEQ0HhqqP1JVXTRes7uvYAhxuBWuzsAhUrJ47theBV/O469y0+fcHjDCZ6FRtptFBUiWi8N/WZ9CdhSgCXPTyBmFa/LU4gKDd6ZvnkrtsrIjv29Z92MrQ43BM0mCwf+PYpBZ0DjYYu1JybtWLJKnNx5jok7RzCkyZg4G3AaDzXjtvxAyZpF7a+16tuE3SsOJN9GJbZ+or90mY5Rb+KQOpA/R67is1Ht+WRgizjvnTvoT9bP+M8W47dKHNkYiMZDQ4s+jVj3+xYQnvdMFWziW/GhVCnQemsxGcwolLbN4PTZAhizYQib5+1g/pDlKJQikiS53BR+FbPRREDm5MmgcIeAzP7MOf0rKyeu579FOxFFBVWalafjkI9i5bwLPkOQECDmbxBUgAWE9Aj+vyEoE6/mKJMwZMf+nhMR5rzJsSgKRD2NsTv2Co3KcHh9/NrrcRAgX6lcTNg2nBn9Fthy2AXIXTQHvad2jeXUAfKXzsNXkz5jVv9FSJKEyWBG46l2qB3uNhL20vkXM84lP/1NsSoFKVHj5fVP7jjLhlmxH3b6aAP6GAPHNp1k8bXpHFh9FF2UnmLVCjG85QRiIpy0BxRArVHR8PO69JnalVvn73L/agiZc2egcMUC7F99hPlDljnMNnGFQqWgTL2SLjeR3wR+GXz5YkInyn3iXI9dEJQIvsOQvPuB+TIIPqAs9F4WI6UksmN/z8leIAu3zt91eEyhUuCX4aUQVI+fO3H8v9NuhwtekDFHejx9PSlerTAzj08g+plNUdDLL247tRc069mQyh+WZ8fSfTwJecqlI1e4lMzqikadkX8mbbA79sjwKGb1X+Q4+0WCu5cfEBEWSau+TXgSEs6VEzdo0LmWQ+VLtYearqPb06R7Pft9FiiTl5yFs3Fu/yWObT7pNIXwBQqVAqvFGmuz2sNbS0BmP75b+PY2ThODIPqAOm4fVJm3g+zY33M6/diGid1mxokdazzVtP6maSy9kFxFsjP14Bi+rfuT25uoKo2SLyZ0ijVjc+XQXxB6P4zj/53GJ8CbOu2q0X3OdjfvyH0kCe5dCQbg6KZARreb7DKN0GqxcmTDCVb9toG9fx9CrVVitQKCLdzyovm01WLli18606JX7M2xzfN3MLP/IpAkJElymSkkKkQ+G9kOtUZFplwZOLP3PDGROio1Lkv11pVQqRPfAMMV+hgDu1ccYO+qw6g0Shp0qk2N1pViae/IpH5kx/6eU/uTalw+fo3VUzYhiAKiICABtdpUdSiBUKh8fv66N4flY1ezdeFuYiL1mE3OuzWlyxJArTax9bL1MQaun76FWqsif5k8sfL8JUli7qA/WTf9v1fiztZ4C4sSgyBAziLZuXX+LiM+mhhvNgrA5nk7efroGSaDKZaejsZDTdcxHciaNxOl65ZA6xm7zeOxLaeY3vcPt+9DoRBp+21z+4O15sdVEnBniePp42f0rTKUp4+e2VctZ3af559JG/h11wh7SM5dJPM1pKi5YDwOog94dEDw/Nhlc3SZ5OHdqpyRSXb+W7iLdTO22tQPTRYQBLz8PPEO8KJTnt608OvCt3VGcGbvefs5Xr6efDGhM/88WsD0o+NdqgA+uhNq10aXJIkV4/+lbebuDG06lm/rjKB99i85uvllI++tC3ezYdY2TAYT+mgDhhjjG3HqYCtmenjrEV+W/tYtpw42yVVHm7omo5nrp25S+cPycZw6wPzvl7rv1JUKarapkiR1xcQwve8fPL4XFisUpYvSc+PMLf6asDZBY0mGo0ihH4N+A1jvg/kSRI5HevI5kpR0gTkZ18iO/T3m1vm7TP/6D4x6o332aTKYePY4gjXTNhN6/wm6SB1n913gh6bj2LVif5wxfNN7xxtzvxp4A4A10zaxfOy/6KMNxETo0EXpCX/4jNGf/MalY1cBWDZ2daJTCrVeGkrXKe72+81mC9dP33JLHAxsYSWVE40dq8XKuYNxK15f4G6bOZVWSfpsAfSa/Llb708uDDoDh9Ydd/iAM+pNbJy9ze2xJMmK9MwmLQCvjqfHFH2aiPvLkmyvjGtkx/4es276Fucl/6/5OoPOyLTe8zEZY8+2MmRP77Ivp1KtwKg3EfU0mj+GLHeoPW7UGVkyYiWQuApPtYeKQhXy893CPkzcOYL8pfPYy/JdYTVbsbrp1AE8fDxdZnf4vdZxSJIkLhy5wuxvFzttY/iC7AWzULxaYRp/XZf5QZPwz/j2UhkBYiJ0Lu8t6mnMKz9JSJYQ2z9HcsPmC8+rUOOiUpsJPj+NB9dDkmixjCuS7NjXrVtH8+bNKVasGEuXLk0Om2SeI1kjsEbNxRraGmvox2T02oxkddyjMjHcvngvQUVAkiQ51GFp0MW5zKggimQrkIWvyn7ntMmzJMGFI1cAW2f7hCAIAt8v6cuMYz9Tq01VBEFg3Jah5C6WE62XxmVLuYQy7fBY0mX1d3hM66WhRe/G9p8tFguj2v7G4A9G8e+UTS7TNEWlSO8p3ZhyYAzV25XHw9sj0Tae2XOe/rV+pLlPJz7J2oOFw1agi3KSjvkKvhl87Ju/jshZ2NYgWjIcpGim/kiPP7D9C22AZNgb+83WaFxJC2g9Tcz830K37kcmcSTZsRctWpTJkyfTrFmz5LBH5jmS5RFS6IcQ9TuYz4P5HFl9/0YKa4FkfRrn/Y/vhRF882G8M8NXyV00h12IyF0cxYm7jGiHl1/cCkiNh5qOQ1rzz2/rCQt23b9U62Vrk9eiTyOXDuZ1JEni5rnY6ZrpsgQw5/SvTNg+nIqNyiRLr1KFUuTG6VsM+6s/Hj4eqNQvVylaLw1l6pagTvtq9tfW/r6F4/+dRh9tiLefpYeXlnINSrplhyRJnN4dxG/dZzK2wxR2Ld9vX0Xt+fsgPzQbR9CBS+ijDYQ/fMY/kzbwTbUf4hUNUygUfPJdSzQO9gc0nhq6/PQJkvE4UngvtKqHgMH2z3IXKbwvkuHQyxNURZ1KC5iMcHKvNye2nnGoBySTPCTZsRcqVIgCBd49BcPUjhQxDqyh2L5ANhSiESwhSJGT7a8FHbhI9+L/4/NCffmi5AA65PyKXX8dcOsarfo2SdAGndlodtgFKn3WAKYfHU+eMjlQqpVoPDX4pPOm27gOdPzhY7Yt3usyDq9UK2nc3db4o8OQjyhSsQBa75f9UJUuZt1qrQpv/7jpk4IgUKxKIdoNbuVwMzOhWK0Sdy7dp1D5/Cy4MJnW/T6kYLm8lGtQiu8W9uGnNd/FaoixevKmePcKRIWIxlPDyDWDCH/4jJ3L9nNu5yWiI2Icvt9isTCi9S/82OJnti7azZ6/DzLlq7n0KDGAsOAnTOk1N05evFFvIvjGI7Yt3utwzFdpN6glTbrXQ6VR4eGjxcPHA7VWTZefPqFG68pIkb/wulSADT1S5AT7T4LoCx7t0MfEfaKajCL/zs2EJEmJ7pIlEz9yumMqRJJMYNhO7I2nF5hAvw78RnL15A2+bzw2lgMxxBiZ1GMWCoWC2m2rOjgfTu06x4IfVnDt5A1EpQJRIaBQKTHpTSjVSodOWOOpoeXXjR06UbDpvn81rxMF8xQiJlJHxhzp7bnP8cndZs6dwV7ar9aomLhrBIHbzrD7r4NYzBZK1izKrP6LHIZyJKDWJ47vE6B4tcIULJePy8evxTpfqVagUCqxmC1uFVxpPDVkzJEesO0rfDGhk8v3P3301OkxUSFSqEI+StUqTvNeDVk2ZjU7l+1HqVJgtVpZNXIzX0zoRKuvm8Q6b+PsbZzccS7W71sXpcd0+zFj2k12uglsiDGwdeFumn/V0KXNoijSZ2o3Ogxpzend51GqFJT/oJRN4Euygums85PNl5Ekoz2VUfAdwsHlh6ne+BoWk4BCKREaouLn3rl5eE9NrqJZE5w+KeM+8Tr21q1b8+DBA4fHDh06lGxtu4KCgpJlnKQSGBiY0iYgCnpKZbU41WaRrDEEBp5gYb9VDpfYhhgj0/vNxyuvKs6G2Lmdl1g5YuPLkIrJgqgUbdcSsIdyXrSSU6qVKNUKanepQtk2ReL9fK7essXK74fZwiOSJOGT0Ysn9546fL/GU80X8zpw8cqF2J9BRqjf96XDrtutGrsWHLJl70i2HHSlRknjPrW4HXyT28E3ndrUdmwT1v68jdPbLticnySRMXd6anWqxP3LDzm25nS8ssJWiwWf/Bq3/z58M/oQds9x+EmpVtBpcmuUKgV/jPqTg3+dwGQwx8qLnztoCTHWSApXf9l1a8WEfx2uAswmC+cPXUaldf51jngakaC/bb9Ctjj/pWsv9lQkymQTEQTHs2xJglMnT/NqbD1c7E7nin+RNXcUMZEK7l7TAAIqjZJ6Pau90e9aavgex8ebtDFex75mzZo3dvFXKVGiBBpNyj7BAwMDnWpgvE0kSUJ6nBmswQ6PC8oClC9fgZ9OT3G6KRf9VEfe7PlJnzXA/prFYmFc4xlx4uRWsxXjczGrF6JWL2Z/Xr4eLLszG40bndNPnDiB1uDNxSNX8fb3pMZHlZn//VIiQx1v+Go9NXw1+TOq16rm8PirlC9fnoaf1OOfSRu4fzWYnEWy0/bbFhSvFn/fzOiIGP64tRKVWmkPVQRffcTKkZtQa1TkLJSddoNbcmzLKW6eu82t8/cQRQGTwYzaQ40oCoxcO5hyNdyLgwN8/lN7ZvRbEGe1ovFQ07xXIypXqYTRYOKnf6Zg0sddMZj0Zjb+totnt2IoVD4/NT+uTMwz5ysfySphjHH8cFJrVXzwaZ0k/21bw+uDYQfw+j6OgKCpQfnylWK9Wr58eXJlz820PvOICItC6wWevh70mdotTtFacpJavseuSA4bDQaD0wmxHIpJhQiCYBNRihiJLRf4VbQIPgMAW2waJ3FcySrFSUO8dvJmgjsaGQ0mzu45T8XGZV2+L+JJJNO7LCbsbjhmkxmlSsm0PvMB5+3mJGBa7/n8NX4NHYZ8RJMe9V2m3JWqVYxStYolyH6wtXV7cD0kzgNNskoYdEZunLvNrP6LWHJ9BlpPDaH3w/hv4W7uXXlA3hK5aNS1bpz0w2ehEayfuZVD646h0qhp3LUuDTrXQv38Adioa12un7nF5nk7kCTbSkipUlC2Xkm6jesAQNiDJ7aprhMe3w3j3ymb8PDWMvvbxWTOlcGpro8zRFFA66WleS/XYRh3EHwGIRmPIFmjEIQXzl0EwQvBd6jDc6o0K0/lD8tx/1oISBLZCmSR9+PeAkl27Bs3buSXX34hIiKCnTt3MnfuXBYsWECBAgWSw773FtHzI6xSOERN48Xy1mIxo/AbiqBtANjkAP5bGLf5AUCBsnnxTRc7r9pisSZYetdqthJyK/7c8rHtpxBy7bF9Q8xsjH9j7EVYIeTWY2YNWMSt83fpPaVrwgyMB0mS2LZot8uqT8kqoYvWs+evgzTuVo8M2dPTaZjjTkoAwTce8nXlIeij9fa4/c1zt1k/ayuT94/Gw0uLIAj0mdqNj/73IYfWHsdsslChUelYXXJ803m7tYGoi9KjjzYgCLZYv7sFXKJCpFTtYgyY91Wy5MULylyQYR2ht0aSwfsUIIGmHoL31y4leQVBIEfBrEm+voz7JNmxN2vWTE51fEOIXt2RPDuC8RQgci5Ioly2l0vYLj+15dC6Y0Q+icL83LmLoq2BQ7+ZX8QZr0DZvAmWvRUVItkLZHH5npBbjwg6cDFJWQ76aAOb5m6nzYBmZMqVMdHjvI4kSW71KtVHGTi1O4jG3erF+95JX8wiKjwqVnGTPtrA3Uv3+ee3DXQe/lJjJ2vezHzc3/H3w8vPi7L1SxK47YzTjlGv3kfkkyiqt67M4fXHsVis8cogVGhUmhGrv+PA6iMs+WklXn6eNOhUi8IVCyRaRldQZOfu055kyp+6Qx3vO/KaKJUjCB4ImmoImipIxI5zv8jXbvZVQ/wz+uIT4EXtdtWYcfxnmxN/DbVGRdexHeLkKgui4y+5IIB3gDdl6pUA4Ergdb5vNJqmHh1p7tOJXz6fzqO7ody/Guy01D6BN8vhDcm7oSSKYqxGEE7fpxDtEsW6aD0b52znp48n8mv3mZzbf9Geix7xJJLzBy87rFg16k1smrsjQfYNmNeLdFkDYjUOd4bZZGHfqsPU+qSaW4VckiTRvej/mPLVXHb8uY/1M7cysN5Ifus+M97c+uTCqDdyaN1xti/Zy72rjveMZJIfOcb+jhOQ2Z8+U7vRZ2o3t97f6usmePhoWfjDXzwLjQBJomy9ktT8uAoz/rcQQbDNPj18tHh4aZmwbRiiKBJ04CLfN37ZAclkgJ3L9nN000mGrxqQPMUmz5UcXWG1Wrl8/DrRz2IoWC6vW80muvz0CVO+musyhKFUK2j0eV0e3n7MN1WHEhOps4c/9q48RPXWlRm8+GtiInQolAqnexUxTnLQnZE+awB/XJjCzj/3sWXBLu5dfYAuQu/U8UqSxI4le+N9kGo81YTee8Lje2H2lZRklTDEGNi76jDlGpSiXseaCbI1oRxYc5RfPp9u2zOy2vLWy9QrwY8rv02W2gIZ56Rpx37/WjBRT2PIVSRbksq0U4JnoRHsXLaf4JuPyFs8J3U7VE+2sRt9VpeGXeoQ+SQKtYfa/iWr1bYKe1cd4UlwOLmL56Rq8/L2AqapvefFKX6xWqxEP4th14qD5CycneunbzrdCxREAa2nBpPBjCRZnYYeKjZxvkl7dt8FxnWcQkykDlEUMRlM1O9Ui29m9HBZaNWgUy0e3w1l6eh/sFitWBzE/0VRgVKtZGzHKTx9HGF/wEiS7UF3cM1RdjcpS602VTC7CDkVLJ/P6TFnRIRGsvLX9YQ/fIpRb3RrNv1qaqQjsubNzN3LDxyGx/TRBlZN2vBGHfv1M7f4ufO0OH8zp3cF8Wv3mQxb0f+NXVsmjTr2a6dvMv7TaTy89QiFyiZH26JPY7qP75hsefdvkiMbAxnTfhKSZBPI0nppmPvdn3w+rU2ypXEJgoDva6JVXn5eNO1RP857n4SEc/+qY9Emi9nC/n+OMOPEz3Qt8g0Wk2OHrVQpGLt5KHlL5mJQg1HcCrobW8/cU031VpWcbrLduxrMD03HxRER27V8P6Io8L/ZPV3eb4chH9GidyOW//4Pa8ZtxfRasZMhRs+3tYcTE6lzuGrQRxv4d+om8pXK7dLxthnQ3KUdryNJEoM+GEXwzYcJ3v9QKBUOHXfhivnpNaUrQ5uMdZqRFPbAtcRDUlk5cV2czxhs4apDa48T/vBpnAbiMslHmouxP7obyre1R3Dn4j0MOiMxEToMOiPrZ25lzrdLUtq8eAl/+JQx7SdhiDFifK77rY82EB0Rw4K+f2OMZ6b2JrCYXWfTWCwWsubNjFc6552R1Fo1CqUCbz8vftv9E4271kXjqUalVuLl58kn37Vk0OKvnZ6/cuK6OMqSYCvG2rZ4LxFPnPdufYGXnxfGGBMKRdw/e0kCfYwRwUUq3pPgcLYv2es0RVGlURIe8jReO17l3P6LPLoTmqheroUrFcDTxwNPX9s/pUZJs68aMvXQWHIXzeEyEyhXkewJv2ACuHz8ulPlTLVWxZ2L99/o9d930tyM/d+pmzAa4goQGWJsWRedR7RNsILg22Troj1OS8OtFonD645T+5P4C3qSkwzZ0+Gf2Y9Ht0PjHBNFwZ7jnjFXOiIeOnawMZE6vHxt4TAPbw++mfkFvad2RRelx9PXI96V1Ll9F52Gb9RaFTfP3nFLiz346iOnWTJGvRHRxUZy3pK5iQiLdGqH1SIR/SxhMfYbZ28nuIcsgEqrol6H6jTZOYIze85j1BkpVq0wAZlsaY3e/l7UbluVff8cjiPFoPHU0GFI6wRfMyGkz+rPfSebpWaTGf/Mb1eW+H0jzc3YT/x32mkOtUqj4upJ56XnqYF7Vx44lbc1Gc1u5ZQnN4Ig0HtyVzQOVBdFpYguUsf875dStklxNJ6OK1QlSeKXz2fECmMoVUp8ArzdCo/5uFgNWMwWvAPi76MK4JfZx2kWkEarJn/pPA5TAZVqFR2GtKZ0neJ4vCJQ9ioqjZKiVQq6Zcer5yQGjYeaBp1ro9aoqNioDNVbVbI79Rf0m/0lxaoVtq2MNEq0XhpUGhWfj25H+Q9KJ+q67tLqmw8dZvoIAmTJm5ncRXO80eu/76Q5x+7p63yT1Gq1Ov1SphZyFc3h0IECqNRKssWTU/6mqN6qEj/81Z9s+bOgVCsRFaLtnyhybMsp/pm0gX/H/YdfRidZKhLcuXiPi0evJur6zXs1cpoS6J/Rj3ylcrs1jvhcA8cR+hgDVwJvOIyhS0jkKJSVWm2q4OXnifhaOEepVpCjUDaKVy/ilh0vqNq8QoLer1QpyJQrA5P2jMTLN65U8qtoPTVM3DGCKfvH0OPnTvSa3JXld2bRpn/C9gESQ43Wlaj5cRW0Xhp7GE/jqcY7wJsfVw5449d/30lzjv3DLz9w6gC0nhoKV8zv8FhqodHndZzOKJVqBVWbp1xhSNXmFVh0ZRrL78zC298Tq8VqX11YzFasZqvDcM0LLGYrl49dS9S163WoQcmaRWP9bpUqJR7eWoau+J/bBTeBGxMnNieKIlvm70StVTP14BgKlM2DxkONl58naq2K0rWLM2H7jwku/EmXJcBpJo0gCvhl9MEvgw9FKxek84i2TNz1E0tvziRvSfceZGArTPuo34c07VH/rXVmEgSB7xb2YfT676nTvgblG5amy0/tWHz1d3m2/hZIczH2+p/WZMsfu7h26oY91UoUBVRaNYOX9E31OhV+GXwZuXYwP7X+xV416eGjRaVW8fm0Nm+9wfHrCILAlRM3MLkhGfA6SpXC7ZDJ6yiUCkZv+J69Kw+zcfY2IsOjKFu/JB//rxmZc7tfqRodnrAY+AuMOiMXj9hWG5lyZeT3I+N5cP0hj++Gkr1AliRVy/60eiC9Kgwm+mm0PX6v9lBTqHw+Jmwfjjo5ir9SAEEQKFO3BGXqlkhpU9470pxjV6qUTNw5nC3zd7Fh1lainkZTsmZROgxpnaBZTkpSrn5J/ro/l32rDvP4bhg5CmejeutKnAtyoYf9Fgm7/yRBLfVeYLVYqdayYqKvq1AoqNehBvU61Ej0GBlyBXDnXPyt4l5HVIhkyJ6OlRPX8c+kDYQ/fIZPOm9afdOUkjWLJtoesD0oFl/5nS1/7GTb8t1kyJSBxl3rUuOjynZN+9e5fPwaJ7aeQaFSUL1VRXIWfrNZLjLvFmnOsQOo1Cpa9G5Ei96NUtqUROPp4+GWbklKkKtodqfZI44QFSIqtZIB83vFGxd+02TIlY475xz3F3CFSq3k4Z3HbFuy117BGvkkipUT1nLp6FXGbhySaP0VsGWxtP22BfnqZHdZq2A0mBjecgJBBy5hMpgQRIE/R62iQeda/G/Wl0myQSbtkCYdu8ybpXj1IngHeKGLctQm7SWiQiR3sRzkL5OHNgOax1I2fBtcO32TZaNXc+7ARTy8NDTpUZ/Ht8MSNMaLh1LTLz9g89ztGHSxU2kNOiPn9l3g4pErFKsavzZ8Upn//VLO7b/wsjGIBSwmC7uW7adQuXx8+OUHb9wGmdSP7NhlEowgCKTL4s/ju86dpFKtpHHXuvSb9eVbtOwlJ3ecZXirCRh1JiRJ4tljWDb2X7caWwuigMZDTZFKBciaPwstejUicPtZp+qV+hgD+/89+sYdu8loYsv8nQ67PemjDfz9yzrZscsAsmOXSSR3LrkOZ2TIFkC3cR3fkjWxkSSJiV1nxG3srDOiUIpO+7oCKFQKKn9Yjr6/dydD9vT214//d8qpRozw/JpvmsgnUU6rOQEe30vYaiQlMeqN3Ll0H08fD7LlT5kU3rSM7NhlEoQkSVw6ds3W3NgJoigwef/oFKvwvXH2NpHhUQ6PWcxWPLzVKFUKewWqIAqotSr6z+lJzY+r2LsgvcBqtXJsyymnZf8KlZLqLSs5PpiMeAd4u5R2SJfF/43bkFQkSWLZ2NX8/cs6REHAYraQOXdGBi3pS+EKqTsV+V1CduwybmOxWBjbfgrH/zvltCxfVIiUrlM81mz3bWPQGZ1W7wKoPVR8MaEza6dvISI0ksKVCtBxyEcONewBJnSZTtCBSw6PASBBiRpFsJgtHPj3KFsW7EIfradq8wo06VE/TierxKLWqPigSx22LdrtUCag7cAWyXKdN8nS0f+w8pd1scTc7ly6z8B6PzHn1ER59p5MpO6k7veYM3vO8021oTRStaO5Tyd+6z6TyFDHs9C3xbrp/3Fsi3OnrtIo8U3nzbfze71ly2Jj1BmcVpcCCKJIqVrFyF0sJ1FPYwjcdoZVv63nwfW4CpbXTt/kwJqjLq9nNpk5tfscgz4Yxa/dZxK47QznD15mychVdCvSj+AbD5N8Ty/o+WsXCpbPh9ZbiyC87JhVrWWFVJ8Fpo8xsHLiujgKnQAmvYmVE9elgFVpE3nGngo5tP444zpMsWdg6KMNbP9zHwc3HKPshbJuNZd4E/wzaYPTZhWCKFC3WzV6jv482WaoiSHo4CV+aPazy/eIokiv8oPQRersMes9fx/iyMZAph8dHysn/MCao5jdUNQc9uF4RFGMlTVj1BkxG0xM+Ox3puwfk8g7io3WU8PkfaM5u/cCRzYFolIrqdWmqtPVRkK5d+UBB9cex2wyU6FhaQpXTL7exTfP3YkjxfACi9nCiW1nku1a7ztJduwjR47k8OHDqNVqPD09+eGHHyhZsmRy2PZeYrVamdprXpy0OovZQswzPasnb6Tb2JTZlAx/+MzpMZVaScUWpVLUqZuMJn5s8bNd7tghAggixEToYm14Wi1WdJE6Zg9YzNhNQ+2vW0xWlxuWLzAbLUhS3A1Zq1XiyokbPAkJJ12WgITdkLNbEARK1ynulpqlu0iSxLQ+89m2aDdWixWrxcqK8WsoUb0wo9YNjrPvkBi0XhqXhW0eXqlbx+ldIsmhmFq1arFhwwbWr19Pz5496d9f7oySFO5cvE9MhOPKSIvJwq4VB96yRS/JlCuD02OiUoGnf8p2qTq2+VS8TaGVagXhIc8cC31JcGLbGSyWl9kvlZqUdasfqausGKVaSeSTlA2jxcd/C3axY8lejHoTZpMF6/M2euf2X2Le4KXJco08xXM6XW1qPNU0cdDkRSZxJNmx161bF5XKpmVRpkwZQkJCsFoTXm4uY8Nqcd3UIjGl/MlF+8GtHDo5jYeaZj0/cFr+nhisViu7lu+nb9WhdM7fh7EdJnPttGvJ5dD7T5zmmoMtlbH9mJYu4++SJMU6XqJGEQqWz49a61qvRVQ4/6VJVitZ8mZyeX5K8/eEtQ5j30a9kS1/7EqWBi+CIDBo8ddoPDWxQjIaDzU5CmXjwy8bJPkaMjaSNca+bNky6tSpkyihraCgxKnuJTeBgYEpen2rxYrgxEkolCKFqudJMRszlvajbNPiHF93FpCwWiQUKpG85XNS5mObXG1y2Ga1Siz/fg1Xjty0F+M8vP2Yg+uO0X5MC4rXLuTwPIMyxmkBkkIlUq9bVUrUKUT2Ylm4d95xE4hshTNz5mzsWO8nY5uw+XctJ9afxaR3nP+uVCuRrFKcrkUqrYrKH5ch6IL7f98p8ft9eMe5zr/VYuHg7oP4ZnwZZku0jV7Qe0Endi04zM2Td1B7qqjYsjRVPymfoM8oPlL6e+wOb9JGQYqnsqJ169Y8eOC4GOXQoUP2JgmbNm1i2rRpLFu2jAwZnC/ZX8dgMBAUFESJEiXQaFK2c3lgYGCy9RRNClsX7+b3PvNjFdgIooDWS8OCC1NSNJUQ4MH1EA6tO47ZZKFCo9IUKGPbuEuuz+/opkDGtJ/sMPvG09eDVQ//cKh4KEkSnxf+hpAbD+PExbVeWpZcn86Nu9dQx3gypMmYOAVMGg81YzcPpXRtx7Frk9HE0U0nmfDZ7/C8ybWHtxZRITJuyw88vPWYKT3n2B8uJqOZhp/Vpu/0Hm732k2pv8FO+Xrz0EkTF7WHmjVhC+1x9tTyPXFGarcPksdGV74z3hn7mjVr4r3A9u3bmTx5MosWLUqQU5dxTKPP6qL11DL/+6X2asJy9UtR+8tKKe7UAbLlz5Lgps0JYdO8HU5TKsHW6b5Sk7JxXhcEgV+2D2dQg5GEP3yGxWxBoVIgiiKj1g22dRi6CyVrFmXUuu+Z3vcPQm4+AiBznoz0/b27U6cONuVQQRDIXTQHdy8/IEP2dNT8uArdxnVE66mhWJVCVG9diTO7gzDojBSvVvidadjc9tvmzBu8LE7Wk1qrokHnWsmyeSrz9khyKGb37t2MHz+ehQsXkiOHLKCfXNRuW5VabaoQExGDSqNCrVW/E8vL5CDqabTzgxLoIp3L7mbOnZGFl6dxZs95bl+4R/qsAVRuVj7ODL9c/ZIsuDCF8IdPkSTJrYyV+UOWsX7Gf/aHTkyEji1/7ETrraHbGFumklqjsveAfZdo3qsRFw5f4eDa45j0RqxWCQ9vLXlK5OKr3z5LafNkEkiSHfuQIUNQqVR888039tcWLVpEQEDypHa9zwiCgJdf4hpTpGYkSeL07iD+W7CLqPBoyjcsTaPP69jvtUKjMlw+ft1h2qLJZKZIZdd9RUVRpGy9kpStF3/arbsz6ntXg1k7bXOcik99tIHVkzbSpFt9subL7NZYqRFRFBmytB9XT95g/+ojmIxmKjctR+k6xWUp4HeQJDv2I0eOJIcdMu8JkiTxc+dpHFp33D7zPbP3AsvGrmbaobFkL5CVD79owKpf12PSG3l1B0jtoaZKs/IJ6piUXOz5+6DTVEqrxcreVYdpP7jV2zXqDVCwXD4KlnPcqk/m3UGWFJB5q+xdeSiWUwcwxBiIfBLFmPaTAVt7wCn7R5O7eE40nra+oiqNijrtqjF48dcpYrc+Su80ldJsssSrTS8j8zaRJQVk3ir/Tt3kcGNUskrcvXifB9dDyJY/C7mL5WTe2Uncu/KAp48jyFUkO77pU66qtXTdEqyfudWhA/fw1iZrFaiMTFKRZ+wyb5UnIU+dHlOqlXFkC3IUykaJ6kVS1KkDlP+gFFnyZkKpjj0XUqqVZCuQhbL15IbNMqkH2bHLvFUKlsvndDPOZDCRo1DWt2yRe4iiyG97RlKxcRlUGhWevh624qOm5fh110/yBqNMqkIOxci8Vdp/35rjW07FETlTa1XU/LhKiilXuoNPgDej1g7m6eNnhN57Qsac6VO1vTLvL/KM/T1Asj5DMp5GMt9NaVMoXCE/3/7RG62XBk8fLVovDWqtinINStF/bs+UNs8t/DP6UaBsXtmpy6Ra5Bl7GkaSDEgRP4FuIwhqkExIyvwI/lMQlLlTzK667atTtUUFjv93Gl2kjmJVC5GjULYUs0dGJq0hO/Y0jPT0WzDsBQwgPc9EMV9ECvsEMm5HEFNuxqn11FDzo8opdn0ZmbSMHIpJo0jmOy+deiysIOmRdP+mhFkyMjJvAdmxp1VMp0BwtiDTPXf6MjIyaRHZsadVBM94jssbfzIyaRXZsadVNDUBJ1L7gieCZ9u3ao6MjMzbQ3bsaRRB0ILvWEBLrLZCggeoa4K6ekqZJiMj84aRs2LSMKLHh0jKnEhRs8F0HsT0CF6fgba5XCkpI5OGkR17GkdQlUIImJnSZsjIyLxFZMcuk6xIlgdIMf+A5RYoCyN4tEFQpHw7PxmZ9wnZscskG/4eB5EezwOsgAnYgRQ9C/xnIWiqprB1MjLvD/LmqUyyIFkektt/LraCqBft4/QgxSA97Y0kOe9TKiMjk7wkecY+a9YsNm/ejEKhQJIkevbsSdOmTZPDNpl3CFslq+PWcSCBfjt4tHibJsnIvLck2bF36tSJXr16AfDw4UOaNGlC9erV8fPzS7JxMu8QlnuIotnxMckAlpC3a4+MzHtMkkMxPj4vO9vExMQgCAJWq7OZm0yaRVkUi1Xj+JigBWX+t2uPjMx7TLLE2FesWEHjxo1p3bo1o0ePJiAgIDmGlXmHEDxa4vjPSbDJG2hqv22TZGTeWwRJkpzUndto3bo1Dx48cHjs0KFDKBQK+8+XL19m4MCBLFmyxG3nbjAYCAoKSoDJMqkVT9VV8meYgIAFQTAjSUoskgfXQodhMMt66zIyb4ISJUqg0cReLccbY1+zZo3bFyhcuDCZMmXi2LFjNGrUKMnGvW0CAwMpX758itrgitRvH6iyHgXDbrAEgzIvSnUNSmRXxH/yWyL1f4ap2z5I/TamdvsgeWx0NSlO8ubp9evXyZ/fFj+9e/cuFy9epECBAkkdVuYdRRDUoE3YQ11GRiZ5SbJjnzZtGteuXUOpVKJQKBg2bJjd0cvIyMjIvH2S7NinTp2aHHbIyMjIyCQTcuWpjIyMTBojxbViXiTlGI3GFLbEhsHweo/Q1IVsX9JJ7Tamdvsg9duY2u2DpNv4wmc6SmyMN93xTRMZGcmVK1dS0gQZGRmZd5ZChQrFKhSFVODYrVYr0dHRqFQqufmDjIyMjJtIkoTJZMLLywtRjB1VT3HHLiMjIyOTvMibpzIyMjJpDNmxy8jIyKQxZMcuIyMjk8aQHbuMjIxMGkN27DIyMjJpDNmxy8jIyKQxZMcuIyMjk8aQHftrzJo1i+bNm9OqVStatmzJ5s2bU9qkWIwcOZLGjRvTokUL2rdvz7lz51LapFisW7eO5s2bU6xYMZYuXZrS5ti5efMm7dq1o1GjRrRr145bt26ltEmxmDBhAvXq1aNw4cKpshI7PDycL774gkaNGtG8eXO+/vprnjx5ktJmxaF37960aNGCVq1a0bFjRy5evJjSJjlk+vTpb/Z3LcnEIiIiwv7/kJAQqWzZstLTp09T0KLY7Nq1SzIajfb/169fP4Utis3ly5elq1evSt999530559/prQ5djp37iytXbtWkiRJWrt2rdS5c+cUtig2x48flx48eCDVrVtXunz5ckqbE4fw8HDpyJEj9p9//vlnaciQISlokWNe/f5u375datWqVQpa45igoCCpe/fuUp06dd7Y71qesb9Gam/OXbduXVQqFQBlypQhJCQkVdlXqFAhChQoEKfEOSUJCwvjwoULNGvWDIBmzZpx4cKFVDXjrFChAlmzZk1pM5zi7+9P5cqV7T+XKVPGacvMlOTV729UVFSqkykxGo2MGjWKESNGvFHbUlzdMTWyYsUKFi9eTEhICOPGjUu1zbmXLVtGnTp1UpUTTY0EBweTOXNme39ehUJBpkyZCA4OJl26dCls3buH1WplxYoV1KtXL6VNccgPP/zAwYMHkSSJ+fPnp7Q5sZg6dSotWrQgZ86cb/Q6751jd6c5d4cOHejQoYO9OXfVqlXfmnN3t3n4pk2b2LBhA8uWLXsrdr0gIc3NZdImo0ePxtPTk06dOqW0KQ4ZO3YsAGvXruWXX35h3rx5KWyRjVOnTnHu3DkGDhz4xq/13jn2t9WcO7G4Y9/27duZPHkyixYtIkOGDG/Bqpck5PNLLWTNmpWHDx9isVhQKBRYLBYePXqUqkMfqZUJEyZw+/ZtZs+enepXiq1atWL48OGEh4enilX38ePHuXHjBvXr1wcgJCSE7t27M378eGrUqJGs10rdv5kU4Pr16/b/p8bm3Lt372b8+PH88ccf5MiRI6XNeSdInz49RYsWZePGjQBs3LiRokWLymGYBDJ58mSCgoKYMWMGarU6pc2JQ3R0NMHBwfafd+3ahZ+fH/7+/iln1Ct8+eWXHDhwgF27drFr1y6yZMnCH3/8kexOHWTZ3jj069cvVnPuHj160LRp05Q2y06VKlVQqVSxnNKiRYtSxYwEbE7zl19+ISIiApVKhYeHBwsWLEjxh+P169f5/vvviYiIwNfXlwkTJpAvX74UtelVxowZw7Zt2wgNDSUgIAB/f382bdqU0mbZuXr1Ks2aNSNPnjxotVoAcuTIwYwZM1LYspeEhobSu3dvdDodoiji5+fH4MGDKV68eEqb5pB69eoxe/ZsChUqlOxjy45dRkZGJo0hh2JkZGRk0hiyY5eRkZFJY8iOXUZGRiaNITt2GRkZmTSG7NhlZGRk0hiyY5eRkZFJY8iOXUZGRiaNITt2GRkZmTTG/wGYgStU3Ak52wAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"from sklearn.decomposition import PCA\n",
|
||
"\n",
|
||
"pca = PCA(n_components=2)\n",
|
||
"pca.fit(X_test)\n",
|
||
"X_pca = pca.transform(X_test)\n",
|
||
"\n",
|
||
"plt.scatter(X_pca[:, 0], X_pca[:, 1], c=predictions, s=50, cmap='viridis')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<matplotlib.collections.PathCollection at 0x7f716bda93d0>"
|
||
]
|
||
},
|
||
"execution_count": 13,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD7CAYAAAB+B7/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACOBklEQVR4nOydd3gUVReH3zvbNz0h9N57R6QLKKACgopg+VQERVFUFBtWxIYoAjYEG4oNRERABBGUJtJL6L1DSE+27879/tgQWHY3CRAgwLzP4yPZmblzZsuZO+ee8ztCSinR0NDQ0LhiUC61ARoaGhoaRYvm2DU0NDSuMDTHrqGhoXGFoTl2DQ0NjSsMzbFraGhoXGHoL7UBqqpis9kwGAwIIS61ORoaGhqXBVJKPB4PERERKErgHP2SO3abzcaOHTsutRkaGhoalyU1a9YkKioq4LVL7tgNBgPgN85oNF5SW5KSkqhfv/4ltSE/NPvOn+JuY3G3D4q/jcXdPigaG91uNzt27MjzoadzyR37yfCL0WjEZDJdYmsoFjbkh2bf+VPcbSzu9kHxt7G42wdFZ2OoELa2eKqhoaFxhaE5dg0NDY0rjEseitHQ0NAojkjfCfBuAyUW9PUvq6w9zbFraGhonIaULmTm8+D8E4QRUEHEQtx4hKHhpTavUGihGA0NDY3TkBnPgHMB4AaZA9IO6hFk2n1I37FLbV6h0By7hoaGRi7SdwxcCwFXiI1upP3bi27TuaA5dg0NDY2TeJJywy8hN4Lrv4tqzrmiOXYNDQ2NkyjRQD69h5TYi2XJeaE5dg0NDY2TGJoBYQqHhBVhveuimnOuaI5dQ0NDIxchdIjYsYCFwKRBCxg7gOm6S2LX2aKlO2poaGichjBdCyV+Q9q+BM8aUOIR1rvBdANCXB5z4SK38qOPPqJWrVqaYqOGhsZli9BXQokZgVJiNkr8Nwhz18vGqUMRO/bNmzezfv16ypYtW5TDamhoaGicBUXm2N1uN6+//jqvvvrqZVV6q6GhoXGlUWSOfdy4cfTs2ZMKFSoU1ZAaGhoaGueAkFLmk7RZONatW8cHH3zA5MmTEULQqVMnJkyYQM2aNQs81uVykZSUdL4maGhoaFyV1K9fP0jbvUiyYlatWsWePXvo3LkzAMeOHWPAgAG8/fbbtG3b9pyNu9isWbOGZs2aXVIb8kOz7/wp7jYWd/ug+NtY3O2DorExv0lxkTj2hx56iIceeijv77OZsWtoaGhoFC2XT/6OhoaGhkahuCAFSgsXLrwQw2poaGhoFAJtxq6hoaFxhaE5dg0NDY0rDM2xa2hoaFxhaI5dQ0ND4wpDc+waGhoaVxiaY9fQ0NC4wtAcu4aGhsYVhubYNTQ0NK4wNMeuoaGhcYWhOXYNDQ2NKwzNsWtoaGhcYWiOXUNDQ+MKQ3PsGhoaxR4p1UttwmWF5tg1NDSKJVK6UbPHoB5vhjxeGzW5DartK83JF4ILIturoaGhcT5IKZFpA8GzDnD5X1RPQPZYpHc3IuaNS2pfcUebsWtoaBQ/3P+CdyN5Tj0PBzhmIr0HLoVVlw2aY9fQ0Ch2SOc8kPbwO7j+vmi2XI5ojl1DQ6MYIgvYlt92Dc2xa2hoFDuEuSsIa7itYOpwUe253CiyxdPBgwdz6NAhFEXBarXy8ssvU6dOnaIaXkND42rC2Ar0dcCTRGCc3QLmbgh95Utk2OVBkTn2UaNGERUVBcCCBQsYPnw4M2bMKKrhNTQ0riKEUCD+K2T2WHD8CNIJIgYiHkBEDLzU5hV7isyxn3TqADk5OQghimroYovP62Pj4i3kpNuo2bwapSolXmqTNDSuGIQwI6KfR0Y9B7gB41XhV4oCIaUsslWIF198kWXLliGl5PPPP6dGjRoFHuNyuUhKSioqEy4au1bt4/vhM/F5fAD4PD5qta5K35E9MZoNl9g6DQ2Nq4X69etjMpkCXitSx36SX3/9lTlz5jBp0qQC9z3p2EMZd7FZs2YNzZo1K3C/w7uOMqjxM7jsgTm2RrOBa7s34+WpT19S+y4Vxd0+KP42Fnf7oPjbWNztg6KxMT/feUGyYnr16sV///1Henr6hRj+kjP9g9l43d6g191OD//OWkPK4dRLYJWGhoaGnyKJsdtsNrKysihTpgwACxcuJCYmhtjY2KIYvtixedl2fF5fyG1Gs4E9Gw9QolzCRbZKoziSdiydn8fMZvnMVegNOm64twPdH+5CRHS4VD4NjfOnSBy7w+HgiSeewOFwoCgKMTExTJgw4Ypd6IgtGRN2m+pTiSkRFXa7xtXD4V1HGXLtcJw5Tjy5T3jfjJjGnIkL+HjVO0TFRV5iCzWuVIrEsZcoUYKpU6cWxVCXBbc82o0t/27HaTtTxwKi4iOp2bzaJbBKo7gx7pFJ5GTYkOqpZSy3w03KoVSmjPyZR8bcf+mM07ii0SpPz4FWPZvTutc1mCNOLVgYTAYsURZe+XnYFfukolF4bFl2Ni3ZGuDUT+Jxe/nzm38ugVUaVwuabO85IITg+W+GsHreemZNmE/miSwad6xPj8FdKVE2/lKbp1EMcNldKEr4G7zL7r6I1mhcbWiO/RwRQtCiWxNadGtyqU3RKIbElowhIiYCtzMj5PaaLapeXIM0riq0UIyGxgVAURTuH9kXkzW4NsNkNdJ/5J2XwCqNqwVtxq6hcYG4aeD1OG1Ovn5lKkL4uwIZzUaenPAQDdvXDdp/zZ8b+PTZKZzYO57ohEhuebQbtzzWDYNRq2TWODs0x66hcQG59YnudH+4K7vW7kFn0FO9SWV0Ol3QfnMm/cmnQyfnVTPbs+x8/cqPrJizhlHzXw55jIZGOLRQzGVEdkoOHz72ObclPkCvuPsY2XcM+7ceutRmaRSA0WSgbqta1GpeLaSDduQ4+PTJr4MkKlx2N9tX7WbFrDUXy9QAVFUlJ8MWthhPo/iiOfbLhNSj6Yy760vmTFpAVmo2tkw7S6av4LGWL7Bz7Z5LbZ7GebDmz43oDKFn5M4cJ/O+XnRR7fF5fXwzYiq3luhPn9IDuSX2Xj4c8jlOe3DdhkbxRHPslwnfvDYVe5YzT00SQKoSZ46TcYMLFlvTKL54XF7y0+I7cyZ/oRl174dMHT0TW4Ydr9uLy+5m7ucLeabzCFRVvai2aJwbmmO/TPhn6nJUX+gf1e71+8hOz7nIFmkUFQ3a1cbrCR3uMFlNtL6lxUWz5cC2wyybuSooz97j8rB/80HW/Lnxotmice5ojv0yIdwPH/w59R6X57zGl9KDdK9Guv5FqrbzGkvj7ChRLoHr726HyWoMeF3RKUTGWrnh3usumi2r/1iPDDMrd+Q4WTbjv4tmi8a5ozn2y4RG19WDMIWMcaVjiCsVe85jq47fkcmtkOkPITMeQya3Qs35KN/wgEbR8sSEh+j9+E0YLQbMkWYMJj1NOzfgo//exhpluWh2KDolrCSGEKDoteycywEt3fEyof8b/Vi3cCMeZ6AOvMlq5OH37jtnfRrp+g8ynwecgRtyJiFFFCLivnO0WONs0Ol0DHjrbup1r06FkhWJio8kOv7iq4S27N6USc99G3KbyWqiQ59WeM/8rmgUO7QZ+2VC9cZVGPhRP6o0qIjBZMBkMVKifALPfPUY7W679pzHlTljCXLqADgg52Ok1FLdLiYGk55y1ctcEqcOUKZKKbo90AnzGRWzJouR+m1qhyys0ih+aDP2y4hKjcozccP7pB1Lx+v2klihxPkrSXo2h98mnaCeAF3p8ztHMUIIF9KzBUQ0Ql/+UptTLHnswwFUaVCRH96ewYlDqcSUiKLXkJvo++wtmnLpZYLm2C9D4kvHFd1gSgSo4R6tfSAiiu5clxApVWTOWBqU/gqZpgfpReorI2LeRRjqXGrzihVCCLoP6kL3QV0utSka54gWirnasdwOGENsUMDYHKFcGd2gZPZosE1Gp7hA2gAXeLcj0+5G+o4G7itdSNcypHMRUs28NAZraJwH2oz9KsTn9bF30wEQULnegyiuheA9yKlYuwmEFRH9xqU0s8iQajbYpwAhCn2kC2n7GhH9AgCq/RfIHkleCpJ0I633IqKe0cIQGpcNReLY09PTefbZZzlw4ABGo5FKlSrx+uuvEx+vNZ0obiz4bjGfPvlVXg9Oo8nA4HFPc13Po+D4BXCDqQsi4m6EcoV8fp7NIIwgQ1VwesC1GHgB6VoGWa8RtJjs+A6pxCIiH7rgpmpoFAVFEooRQjBw4EDmzZvHrFmzqFChAu+9915RDK1RhCz/bRVjB31GVmoOjmwnjmwnmSnZjHnwC1YvrotSYjpKiVkoUUOuHKcOICxAPqXwwgqAzBlHyAwh6QDbRKT0Bm/T0CiGFIljj42NpWXLlnl/N27cmCNHjhTF0BpFyOfPTQnZks1ld/P581MugUXnjlRzkJ5tSF9qwTsbGuQ69xAIC8La1/9vz/Z8Tuj2ZwgVgrULNjK0/cv0ir+P+2o8xozxc/B6tJuCxsWjyBdPVVXlhx9+oFOnTkU9tMZ54HZ5OLTzaNjt+5IO4vMV/5x1KV2omcP9lbJpdyFPdEBN64/0JYc9RggFEfMuYEbK0+PkZtDXBEsv/59KZD5n9oHIb7uf2Z/N55Ve75C0dBu2DDtHdh/nixe+4cWb37gs3l+NKwMhi7hufMSIERw/fpyPPvoIRSn4vuFyuUhKSipKEzRCoPpUXmr7Hqo3dEhCZ9DxxrJhxX6BsGrCKKJMm1HEKW0cKRXcvni2Hn8fGTLDx49Fv59SUTOIMG1HVa2k2DqTYrs+75jSUT9TKuq3gLEBVKmQ46rP7tQX8rXNZXPxRrdxeJzB77HZKun3Rm9qt6sNSMLqQ2honCX169fHZAosKCvSrJhRo0axf/9+JkyYUCinXpBxF5s1a9bQrFmzS2pDfpyvfW1uacGyX1cFqUTq9Artb29F8+bNL6l9BSE9O5Gp24BAxyuEislgp0nd44iTs++QNGPNmkp5NlbM/S9vfFnXP75vjz+uDoAZRRdJTIXxNKtcNl/7Fv+8DIPeiyfEg7DTLti58A/uvOtTUJOBWDB3yN3qRZg6g7kLa9duKtbfQbjyfycXg6KwMb9JcZE59g8++ICkpCQmTpyI0Rh+1qRx6Xh4zP1s/Gcr9ix7XlaMwaQnMjaCh9695xJbVwg8q8Jvk3ak6+8CHHv+CGGBhJ/AORtp/wVw+TOErHcglJgCj3fbducrnObMSc516gAZ4Jx5ynznIsj5CJ3I/6lAQ6MwFIlj37lzJxMmTKBy5cr069cPgPLly/Pxxx8XxfAaRUTJCiWYlDSG6R/MYvG0f0EIrrujNbc+eTOxiQU7rkuPmfDLQqJQMfCCEMIIllsRllvP+tgGbUrh9YYOsZitPlp1ycrnaDv4DlI+9iugQz77aWgUTJE49ho1arB9ez4ZBRrFhriSMQx8+x4Gvn0ZzNDPxNwRsl4NtxFh6X1RzTmTklXb0KHn+yyZHYnLcUreVtFJIqJUru+TXsAIHmItq5DS4X960NA4RzRJAY3LBqHEQdTTwBlOT1jA3BkMTS+JXXlmKJE8NaErPe7PxGz1YYnwYTCqNG6Tzfjfd2CJKLitnJQCNBkDjfNEkxS4SnHaXaz6Yz2ObAd1W9WkfM38FwbPFXu2g1mfzmP+5L9xOz206tGcPsN6klg+ocBjvR4vy35dxfqFm7BGW+l8dzuqNrwfqa+BzPkEfLtBSURE9Adzr2KR0aOPfYoHR0Vw7zOTOHFEITrWTXTJyuAt7BxKgSupOEzjkqA59quQhT8sYcyDn6HTKaiqiupTaXp9Q176aSgmS9FlJtkybTx6zQucOJSK2+EvjJr16XzmT/6bccveoFLdCmGPTTuWzpNtXiLjRBaOHCeKTmHmR3O5cUAnBo97ACWhTZHZCSClZMfq3Rzdc5zSVUpSq0X1c7pRCCEQkQ9jjniACuWPgIhC6BJQ058A1yJCa9+fxMwJW1fKCi35QOP80Bz7Vcb2VbsYM3ACLkdgBeraBRv54KHPeP7bx4vsXD+O+pXkAykB/Vi9Hi++LC9jHpzAuGVvhj327XvGk3wwBV9u3r3qU3E53Pzx1SIadaxP294twx4bCrfTzW+fzGP6+Fmobkm9trW5+8XbqNaoMsf2JfPizW+TfOAEiuK/2SWWT+DNOcMpU7XUOV27EEbQVz71d+z7SNsEsH2dqy4pAJmrYSP9/zbfwNHDfTjbZycpvf7wjRLlP6/GVY/m2K8yfnhnBm5ncONrt9PD4p9XMHhsf6ITikaqd97Xf4dssi0l7Fizh8yULGJKRAdtX/PnBtYvDJ2f67S5mPbeb7TpdQ3gRQhDgXa4XR6Gtn+F/ZsP5t3Qlv7yHyt/X8cr057ig0GfkXYkHVU9lap4aOdRhrZ/mSl7P0FvOP+fiRB6RORjyIjB/hx5YQE1HVx/Ax4wtkboKwJrCj2mlF5kzodg/wZydWyk5WZE1EuIfKtoNa50tMXTq4xda/eGzbU2mPQc2lF0Gj8ueyg1RT86vQ6nLXC7x+3hvQGf8HzX8HLBRrNKp54rkMlNkcfroya3QbVNzjd/fP7Xf7N/y6GApxSpSlx2F2/fPQ5bpj3AqZ/cbs92sOzXfHLnT+4rJbvW7WXl3HUkH8hfT0YIBaFE+P+vS0BYb0NY++U69bNDZj4Ltq9O6cvjAsdsZNqdmmDZVY7m2K8y4krHht1mz3Lw+u3vM/uz+fk6ysJS59qaYbf5e7YGLhK+878PWTBlcdhjhJC889NuutxxKNeZSb8wV/YYZNaIsMf9PunPsDcZh82FIzt03NuR7WTH6l1hxwXYm3SA/rWfYGj7l3nrrrH0r/0EL/V4G1uWPd/jzhfp3QvOPwmO2bvBdzA3nq9xtaI59quMW5+4GXNE+AXS1KPpfPb0N3zy5FdnNa6UKlGm9cicT5H275FqGveN6IvJGjrmG1MiKiAkdHTPcVbMWo3PE14oKyrOyycvleOb0aVJPnR6CMYBjulIX+inDYctnycHnYLeGDrUYjQbiCsVG/bYrLRsnmr/Cod3HsVpc2HLtON2eli7YBOv9n437HFFgmtp+G3SjnQuKJLTSClxOVxFcqPXuHhojv0qo8MdrWjVs0W+zt1pdzFn4oICwwonkb7jyJRuVIkfh8wZh8x6B5ncgVoNNnLf6/1CHnN0bzLvD/w07++kpdvQ6XUh9z1JVpqBXZus/PplCR7sWIvNq6ynbRXg+ifkcS26Nc43Tq4o4bNfOt3VNuy2P75chMcdvIbgcXnYumIne5MOhD32vBEG8hUSk9lI93qkDJZpLgyqqvLjqBncXmoAPaPv5ZaYe5kwbDIuR/ibpEbxQXPsVxmKovDUpEE8On4AJSsnht9PJ/hvztpCjSnTB4PvIDrFib+hhRNwQdYINv39X8hjvG4vy2euIuOEvxjHHGEqdHqh163gtOl486FKqAE1P6FnlbcP7Y7RErzIarKa6P3EzTz+yYOYLEYUnf/noOgUTFYjj304IN/G4Rv+Tgqpbw/+m8X2lfmHcc4L03Xk2zzEtRSZ/gAy+VpU23dnPfx7Az5hysjpZKVko/pUHDlOZn0yj+duGBm0HqFR/Ljqs2LcTjf/TPuXLcu3Y/fZKP1sWcpVL3OpzSI7PYcf3v6FPyf/g8vhpl7rWrS8q9F5KcL5vD4mPT+F2RP+RNGJoMXLACSF+gFLz07w7gRChVA87Nm4O+yxRpOBwzuPEZsYQ/OujfD5Cq7MPB17jo6ta6zUa2H3G2wKrbFSsmIiY/55nVH3fsjBHUcwGA1IKbn9qe7875U+KIpCrRbV+WX8HPYnHaRSvQr0HnIjVRpUyvf8sYkxCCFChikURSEq/sJlpghdaaT1vtxero4QezhP3edy3kUVkSjWWwo19uFdR/nnp+VB2VNup4c9G/eza+U+WrQ4PyVQjQvLVe3Yj+45zpNtX8KR4/QXwegVlk5Zxf9e7UO/5y6d7ogt08bg5s+RejgtT4Vx9fwNbPhnM+VLV6R5l0bnNO57Az9lyc//hp1lno6UkhbdGhc8qG8fCH2YybKPhFIejh8IPRP3uL3El4kFwBJp4fFPBjJ+8KRC2QegKJCdrgcsYOmF0JULu2+1RpWZuOF9/pz1F9UqVadcjdJ5xVgnDqXyzYip/DvTL2mclZZDy5uaFujYbxzYmX+m/RtyYVZSyPfvPBBRw8Bwsgr3MP4PIUQ2jHRAzhikpWehnopW/r4u7DZHjpOkhdvh0XO3W+PCc1WHYl7pNYr05EwcOf7MAtWr4nZ6mDJyOpuXXzpRsxnjfyftaHqeUz+Jx+VlzIOfntNCVvLBFP75aXmhnKbJauK6vm0oW610wQPryhF6tg6gcOvgEiHj+YoiqNKgIqUrxyG9e5C+43S59zre+eMlmndrTHzpWKo0rEjT6xsiwsTA3W5B1QZmiBqKiA4nDgZSuvPS/+LLxlK1YaU8p55xIpPBzZ9j2YyVeD0+VFVyaPsR3r5nHPMm559ZUq91Lbrcd13A9en0/jDOU58/gs8b/L5IKdm4eAvT3v+NPyZ9RdaBF1DTH0faf0bKUDPvYHw+H39++w+Pt36R+xsuYPSwHhxM+yP/g9QUkPmpS56iIOdfDJQbNArgqp2x79m4n2N7k5Ehwg1uh5tfxs6mXutal8Ay+PPbxSGLiACy03I4sPVQvuX4oUhashW9QReyYAj8jlboFKxRFvoM68EdzxTusR19HVDK+ZtTBMV8jbTr9zCrFy/n76n+m4qUEnOECUukmeFflEYmX+s/TnqR+hrUa/kOb//+Yt4Ix/Yl82CDp3HaAtP6dHqFFt2aU7rJc2FNk+5VyKy3wbsFEEjjtZj1vYBT4axfxs7BlmkLaj7isruZ8NRkrr+7fdhFXSEEQz4aQKsezfhl/O+kHk6jTJWSJB9M4Z27xwFQsW55HhlzP006NSAzJYtnr3+dI7uP4XW70BtUPlRh6HsH6XTrYsgZi0H3Sr5vt8/n49Xeo9mwKCkvlHZs3wmWTP+PGdv16HTh8tcliMLJRbS8uSmTnvs25DZzpJn6nWoXahyNS8dV69iP7z8R9gcrpeTwrmNFch63082S6f+xa/1eSpSLp9Nd7Ygrmb/2udcdvrhEURQ8rrMvPjGYjfnOxFrd0pxnvx6COcJ0Vt2vhBAQNwGZdic+b3buAqoBUCDqCRRTY576vBHdBnRm3lcLyU630eyGRnTqtQWz/PK0TkWAdzNq6p1s3fkh6Sf0VK4bQ/lqXt6c/Qhv9PsSp92FEAKPy02L68089/FRpGM2mLsEldJL17/I9EEE5Hm7l1MzcQ3S2xChrwLAP1P/Dft++rwquzfso2azavlef4tuTWjRrQl7N+3n8dYvBdyE9m48wMs93uH1355nyuvTOLD1EN7clE6vx/8+jx1Wgcq1d1K1biqV4z4EuoQ93/JfVwU4dciVW7C7WPBzLF36piCCwjEKGNsihDnsuKdTpmoprr+3A39NWRIQZjJajNRqVpVqLfIPUWlceq5ax16+ZpmwDlTRKVRpcPaVgGeyf+shhl33Ki6HG0eOE6PZwJfDv+epzx+h813twh53zU1NmPvFwpA53UIRVKpX/qxtad6lYdjFSXOkmW79O2ONOjcNcKGvCImLOLh1ApXLpYFSAmHphdD77RRCUK91rbwnIKnakcnDOHPRb+dGCyMeqEBO5niEIvF6fNRp6uLlzw/y/aZGbE4aRPbhr6heewsly2UDEpn1N+SMhYSpiNNUEWXW6wQX70gU4UJmf4CIG59rW35XJs9KCOyLF3/AZQ8udnI53IwfPIkTh1LznPrpeDzwy8QSDBt7CKtxD9J3FKELvYA/Z+KfYRe9vxtTjo69fRiNWfgrUQGMICIQMeFDVaF44pMHqVy3PD+Omkna0XQiYyPoMbgL97zch01JG89qLI2Lz1UbY69QqxzVGlcOOWs3GPXc/lSP8xpfVVVe6PYGmSlZeTF8t9OD2+lhzIMTOLzraNhj+z3XG5PFGOR0DGYD94/si8FYsD7KmVgiLTw6rn9QwZDRYqByvQpUrn92oZ0zEcJIuqMNSsxrKFGP5Tn1kHi3gQh839OSdTx1S3VOHDHisKnYsyVup8KG5WYe61YJ1bGaBnWG0rrzKkqWyyJvtVbawXcEmflS3lhSTQNf6BxyISS4T1W3XtevDQZT6PfTYNRTtWHhZ6frFmwk3PLH0T3H0RtCPyGqPoU9W/w3VSn1/mraMGSn28JvyzSwMeltiHwUdNVBVwUiBiBK/J7vwnIoFEWh9+M389Phiczz/sSMtK954I27MIZ5rzSKF1etYwd47ZdnKFejNJZIM4pOwWDWYzQbGPLJQKo1qnxeY2/8Zws56baQP3TV62PWp/PCHluqUiLjlr1JnWtrojfqMVmMxJaMoftTnen12E3nbNONAzrzxqwXaNihLpFxEVijLfg8Kge2HmJA3ScZ0mo4R/ccP+fxQ+G0u9i/9VBevjqQG+s99fQgJTx7ezV8IddgBccOGnn61kpINYvQsrdecC1Gqtl5xxSE2+km5Uga3R/uQmRcBDp94E/BZDVy/xv9mP7BbEbe8T4vdHuD57uMZMxDE9j6386QY+Y7uxeEXEz1HycpXdGd+28v6MI/LTa7oWHYG5HH5aVakwYokQ+jJP6OkjgPJWooQlew9n1+nG1jeo1LT5GFYkaNGsW8efM4fPgws2bNombN8DohxYW4UrF8nvQB6xYmsX3lLtJz0rjn6TuIjj9/dcNje5PD5oF7PT4ObD2c7/GV61Vg3LI3yUrNxmlzUqJ8AuvWhU9DO5Ptq3Yxe8J8ThxKpV6b2tz80PXEl46jUbsIGv6qcHDzLvYkeZkxKZ6tayIA2LFqF4+3Gs7XOz8kItpawBnyx+vxMunZb5kzcQGKXsHr9lGvTS2e/foxSpSrAyLCP9sGNv4bQVaaHl+YZhRGo2TXJis+r0QfbsIo9H61RCUKocQh9ZVz8+sDUaVg58YKDOvdH4E/tHVd3za4HG6W/rICr9tH5foV6HRnWyYOm4LP6wtacF74/VK6PdCRR8c9EODMW3ZvxtLpK0J+7vGlYv3FsY60oNRQo1ml94MpgIkMRwtKKLFhLhJueexGZn78R5BNJouRdn1akVAmfEHVmUg1299cWymlqUFeYRTZrbhz58589913lCt3do98lxohBE07N+DOF3rT8tbGReLUAcpUKxW2VF1v0FOpXuFCH9EJUZSsmHhWs6avXv6Bpzu+yrzJf7Pmz438+M4M7q/5OAc2fINMuQVp/5EKVZNpd3Ma7/y0m7ue9C8Uq6rEaXcxf/LfhT5XOEb3/4Q5kxb41xeynXhcHjb+s4XHWr6A0+ZCxLyDvzm1YNGMOKrVdyCU0DdCnUFijfRx/FA+WuNSBV3JvD/96Y+Bi4UScNkF7z0ucDvcuBxunDYXC39YQnZqNnPs3zPX/QPj/32LH96ZgdPmDJlF5LK7mPfVIlb9sT7g9QFv3YUlyhIyPTP1aDo56TYEIq8KVqeTGM0qfR5Jp0FLHxhbcCBjYPhrBBLKxPH+3yMoX7MM5ggTETFWjGYDne5ux1MTB4U9zmFzsnr+Btb8uQGnLdWfYpncCpl6u786NWMYUg0f5tG4vCiyGXvz5lol2uk0aFeH6IQonLZgASWdXqHnI10vyHm3rNjB9A/mBOSru50ejGYn5LyLr4QbXW6oV9GB2SrpOySZZXNj2L/dgtPmYtXcdfQecu4hn+P7T7DklxV4zkjZVH0q9iw7C75dTI9HukLCD8icj/C493Hz/06weVUkLkewUxRAheouFkxL4L5n0zi1MHgSM1j7BGR9COM1ED8Zmf0WeDYgJWSm6XihX1UO7AhM+3M7PGxauo0da/ZQq3k1/vl1ecg02NNx2lzMGD+Ha25skvda2Wql+XjVO4wfPIm1f20KmJlLVeYteiqKQqe725FQJoKudxqoWEsPhuYIQ03k3oL12Ks3rsKXW8exf8shstNyqFSvfL4Tkqnv/cY3r03NCzepPjsDXzxGj/vdcFJLxvkH0ncQ4n8sFi0GNc4PLXh2gVAUhXfmvURsyRgsUX6HY7IYMVqMPPP1Y+fcmacgZn06L68N3el43AqP3FCLvg3q8fOEEgGxf71e0u3OtLy/I2MjzsuGTUu2og+TSuq0uVj+22oAhKEeStyntOrzCpZIQff7UjBbff4FTkBvUDFZfDz70X4yU/XElK4PkUMAk79RBWb/v03tEFGB+ezSux9p+wrp2YyU/uyXP6fGsWdz6Mwft8PNS93f5vaSD/D1Kz8VWMgVk+ChXpO1fjVL14q8m/fu9fvYvHw74mSHpBAIIWh5YxMeencAlZrci7DehTCcXehSCEHlehX8E4h8nPq8yYv45rWpuOwu7FkO7FkOnDbBpJGlWPr76Wm3bvBuB0/hG31oFF+KTbpjUlLojjkXmzVrivaL/fSMB9nyz06O7kwmOiGChl3qEhFrPOfzFHTcni37QlamSlXgdgrcToVvRpcmJ0PP/c/7QzB6A8SX8s+ujRYDVduWPy/7Dh05iCrD677sWr+NQS2eokqTilx7WxOsFSzMf68KT7+3nmtvyGLmlyVIOWqgVmM7twxIISbeS052JKVa3sW67Wb0yniizWtQhIdsV31c3rLAprzxjbpj1Cr5IopwoAiZt5baa0Aq//wWy84NwTcuKSUZyf4F3syU7KDtp9P9vhQeevUIQiio2VtQpRGXryRbDz7HqPu+wu3woOhUpC/0vMmR42T14mXE1DITam5V2Pc+O9XG/E//YcP8rXjdXsrWLs2Nj11HteaV8q5p0vNTQkoeuBwKX48qTdubTi1qS9XBkX0zOJ5d8Iy9qH8nRU1xtw8urI1CFrHQcqdOnZgwYUKhF09dLhdJSUnUr18fk6noGimfC2vWrDkvka0LTWHs+2L4d0wdPRPVl//HajSr/Lh+MxHRKg6bwpdvlmb+tPK06NaEl6c+lfc47vP6OLL7GBv+3oLeqOfa7k2JTQxdYHXSPnu2gztKDyShdDbV6zvITNOx6d9IVPX0WazAaNahMxgZveAVylaLwWxvh04ffENwOXW4dCOIrXBHyPNK31FkzlhwzgfpAxEJMpVQM+atq6082bNGvu9NftRpZuOdn3Zjtp45tp709Jr0vzYKR7aTOs1y2L3ZitsZ7LjNVh/3DjvBbY/Y/emIEQ8jhH+/wn4Hs1KzeajxMDKOZwZk25gsRp6f8jhte7fEYXPSO+6+vL6xwUj+OLzxtLRaAyLqKUTEgHzPfSX8Ti41RWFjfr6z2MzYNYqG2MSYAp06gN4g2bImgmYdsvH5FPbuasrjn9xC57vbIYRgzZ8b+OyZb9i70Z8PrugEBpOBDx+V3PPy7dz5wq1hx7ZE+Pji32yio7fj9fi9hsclGDmwMkkrT2VfuJ0+cDp47dbRfLejD3isIHOCxjOZfZiMC4Bgxy59x5ApvXJ1UHIdnAzdEQmgZhM70fEestLyz8dWdBJVBYPRGLCA2mdwMkZzqPfXS3T0ThJK1eFQtuDme1P58PnwmUVZGYDMhpzPkL5jiJjX87XnTH4Z/ztZKVlBKZQuh5vxj35O61taYDQZUHRKWMdutqpn1EooYApf9apx+VBkMfY33niD9u3bc+zYMfr378/NN99cVENrFBJVVZk6emYh9xYYjEYUfVmiqsxgzOIx3PC/DiiKwvLfVvFqr3fznDqA6pO47G7cTg/fvfkLS2eE1lkHcCc/Qlz8TkxmSUSUSkSUSmwJH298t5fEcsGxa1uWnYPb9xEuJg3kpUYGvZzzYaBTLwBFgfufP0bJ8i50ehkkUNahZzpfLtvKnP0b+W3XJkZ8m01siVM56pVqOgmboCSMlKnoD3tIVfDiZ/swWVSMZr9jNZl9mK0+Xvh0P6nHDOxOMuPv/vQL0nd29QMLv18SVgrBmeNkX9JBdHod7W67NmQRnt6ocn2f9NNst4D1fwj9+RWqaRQPisyxv/TSSyxevJgtW7awbNky5syZU1RDaxSStKPp5GQUNmXNRL0u4xGJixCGU2JnUko+fPTzgMbPZ+Kyu5gy8ueQ2w7vWInqXIleH+xodXpJz/4pQa8LITh2qALI0AJlYAHz9aE3OedRWKcO/mKotjdl0q67neHfP8UjY+7HYPI/uPYamMxTYw5SroobRQGTRdLwmh2MmbkVo9nvRI/uN53R3OO061N8WOOrYTDpmf9TPA1b2fhm5RbufeYoN96VSv8XjvHtqq00aZvD2sVRHNmXe1MRenAvL/Q1AEGiZQGIU9sfHnM/8WViAyqOTVYTJcvHcP+LUSBiQF8PEfMOIuqZs7JBo/iiZcVcQRgtxkI1xzBZjTz20SBMUS2CUtsO7zpGTj5l66fvF4o5H43HG8Y/G02Sei2Cx/a6vVSo0wgsvTgz9xwUUCIQltuCjju08yguR+GkbgFcDsGoxypyf6um2Fy30qpnCxb+sBSP24vJ4qP/88eCYucGoyS+lIcb7vBnDU3/LBGXI9TPRgeG2gz9/C2adG7A9vWxrJgfg8ks6fNICk++d4hbBqRgNKl8/GI5bFm6vGpT/+ru2ZXqt+jaOKycsd6gz9M6iisZw6RNY+g/sh+1rqlO7ZY1ePDde5iw4RNiqv+GUmoVSokZCPONWprjFYQWYy+mZKfnsHv9PqzRFmo0rVqoH110fBQ1mlZl64odIbfr9P5OQfeN6EvT6xuGHacwq+mxJaKDXss4lsnujZkYjaFHkBKyM3QYjCpej0BKgcGk0LBDXcpWK42UI5AiFhzfAgKkF4xNIPp1pGMu0jnTb535Zg7ub8njrV9n2Bgr13bNzMvND8SAv+UFZGeV5LfJTShZ08OEkeUoVSWR37/6g20rd4GE+tfY8HlDpyharJJOt2Ywe3Ii65ZEMf2zRPo8koyilxgM4POZ0RniELHjidBZeXP2cJIPnGDF7NV8/NIH9Lz/OHGJXvZtM/PD+JJsWR1BhWouqjfIvSlJL5jCi8Kdyb7NB1n4w9KQufZGi4EH370nIPwSEW3ltqE9uG3o+ekfXS6Y9QdQ0z7NfQoSuemwwxD66pfatIuG5tiLGT6vj0+GfsUfXyzEYDKg+lQiYqy88N0TUIj08qETB/FEm5dwO1x5i2YGk564UrGMX/4mGxdvZd1fmziw9TAd72xDzBkOulz10kTFRYRMkTuJyWqk9xPBBUz2TCeH90Wiz6dAtFGbHH7bvQmvV/D3zFiW/9WZ5759CgAhdIjoYcioIeA7AkoM0pcOaXeBmkledyDPZiY8XhlHtpHJ75amaYdsLBFnhibMEDMGYboWgSQm0cU9T96Lz3MIneKFLCOzPqyAy27OPXf+N7TT76vfvleahb/E0fm2NOJKQsWGt9Lg+scCpINLVkyk5+AbAcHTvb9BSonH5cUS4SM+0cvr3+zNHdMCkY8ilBgyU7JY/8dm0rfaaHp9g7D9Vt/o9wGO7BBPKgK69e/EjQ90zudKrmykZys1E18Bt5u8T9S1COn+DxKmXTXOXXPsxYwJT09m3leL8pQgwZ/3/OJNb/HoN/ed3iMiJFXqV+Sz9aP58Z1f+W/OGvQGPdf/rz0tb27Gw02fwWXPlRC2GJn03BSe/fpROtzROu94IQRDPh7IW3eODRlnN1lNNO5Yj1se7Ra0LaFCHFVqZ+O0KyEcrd85WnJDHUad5IY+2XS5cxUiSpyxnwn0VVBtX0H2KM5s4OHzOVjztwEpYf8OM8NurcZjbx2mekM7qIITRw2UbTQGxXIqLq+mDgDfPr9TB8BLdsapkErSygj0+tCu3WkXLJoRG/Da4T0mvhldBpPFyMer+gTpwZ+k5+BueSGf9ONp1GywlzadF2DQA/oaiMghYOrK5Fd/4qd3ZyJ0Ap2i4PX46PFIFx5+/76Ap7VDO45wbM/x0CqSEravDt1jVlVVDu/0K4qWq1HmihX2kllvoogzJyUSpB2ZNQoRP+mS2HWx0Rx7McKWaeP3SQtCdk9yuzws/nYF3W69ocBxylQpxdDPTumGqKrKPVUGk3kiK88hnKxOHd3/Y2o2rxZQCdu6ZwtG/Posk56bwu71+xCKIKFMHHVa1aTHw11o3LF+yNCQyWqkWddrUNVdhbpeIby47YfJ2fM1Jao9ErBNuldB9ljOdOr7d5j48LnynF7/tGuTlSd71MAa5UNvkGSl6ajX5m9e+6UFsYkxSO8u8GzjzH6gdVvYWDzLgFQFTruOb94rzb3DAuPsHjekp/gXQ89Ep1eo2bxa2G5WUroAQWL5BPoGdKQKTG2cP/lvpr0/K0iX5vdJCyhVKZFbnziVYZaZko3OqIcwi9uZJ4Lb3y2d8R8fDfkCW4YdBFijLTw2fgDtbrs25BiXK1J6wLM6jMa+BPdSpDw7jf3LlSvztn2ZsnfTgbwMjTNRfSq714TWGC+IDX9vDish7POpzJowP+j1Zjc04sMVb9H/jX7El44lMyWbg1sPk5Wak+8Po8djz6HT5ROLOQOjycvhpM9Z9UegcqXMmcSZjTiOHTDyZPcaJK2MIJQ0rz1bR1aaHhBsW7mLZ69/3V+F693rzzw5g35DktHpTr0p0yeUZOwz5Tl6wIDqA7dTsPCXOB6/qSZOe3AQ3xJlYcSvzwa9Lt2rUFNuRR5vhDzeCDX1bqRna9j3YMrIaSFDX06bix/enhFQSVyhdtkgDZ6TKIqg9jWBoYbV8zfwzj3jST2SjtPuwmlzkXY0g1H3fhj0nl/+FLQ6JAuxz5WB5tiLEREx1nyqBMnTnDlbju5JRg2To+d1ezmw5VDQ66qq8uLNb/P9m7+QeiQdj8vDvs0HGd3/Y6aMnBb2XDqDCUvZMRw/ZOHYQUPezSS/+mafV+Xtu8fh9Zw2o/btCdrv+7ElcToUpCx4xqUoHvS6fWz9dwnoyhDcj9VfoHMmi2bEc/+1delZrQE9qzVgzFMVc28WwcSXjiMqLlDuVrpXItMGgDcp95w+8KxCpt2J9AQvakspObo3Oex1ZKflBLTai46PovPd7TBZgm+eBpOBfs/3Dnjt8+emhAypuRxuJj03Jex5L0eEMIKhfvgdjC3yKnyvdK6Oq7xMqFy/IrFh+qGaI0xce3uTkNsKokzVkmFjqnqjnop1g7sdrZ63ga3/7QxyCi67i+/fmhHYOOM0Ni3ZysBms+nfpjYD2tbm7mZ1mDU5AZ8Htq21MvqJCjx3R1W+GV2K1ON6HDb/rNjnU9n4z5ZTA+mCOxf991c0qq8gpy6556ljTNu0mXenbqZGxYeRGS+BiOfMWf78n+IhzE3C487/BiIUQdVGwTbKrDcI2QxEOpDZ75/6070eNeNJZOrtDBt7lEo1Q1fL6gw6jGc48SEfD6TVLS0wmAxYoy1Yoy1ExFh58cehAQ1ifD4fezbuD3sN+5IOBt5MrwBE1Iv41FBPjJYgobgrGS3GXowQQjD8+yd57obX8bg8ef0xzREmarWoTtOb8pmNAClH0pj7+V/s33KIinXKcdPAzpQol0Cj6+oRGRuB0+YMmjnrdAo9Hg4uI//ruyU4c8I7m5W/r6PLfdcFvH5o6zEmPfzDaWEFhdRjRj56oTwzJpYg5ZgRt0sgVcGWVRFM/yyRoe8dZOcGC4llXdgyT1WXiogBSPdqTg/HhE5pDETRSa7vk4Yl8uRsXAXfVsAKIgafz4FOcQF60pJNeL3hnLckXCemCtWd9H4wjXa9l7Fl4XE8ojOqLIXJ7KFW1V1hjpLgXua3KGcC5HyCX35Y0vk2QbubT/D24IqsmB+bd4TBqKfTXW3RnXHhRpOBF79/kuSDKWxfuQtLlIVG19UNapmoKAqKXgnZO9f/XikouitrbieMTdidOpyaZX4Gb274y1AfEfUSIr/Z/BWG5tgvEtKzDZk9Gtwr8OfWts/Nra0asF+dljWYuPF9fh4zi3V/bSIixkr3QV3odFdbNmzcEHb8FbPX8EbfMaiqxOPyYDDpmfruTF747gna9LqGt+e9FNhY22IEKXnmq0dDSgh73OGqQAFVhmzKPO/jv8OmSR7eGxhGcrv8DuXjl8ozYcE2/vsrhk1/jiR5Rxk69okhrmxriLgPbF/hryz1ct0tWcz8Kh6vO/xMWvUJFs+Kpe9jp/cNlYAbLH04dNhIpbKpoJSgXodY/pk5J2T83GCSlK3sZP92y2mv6elyRzqDXtvL37/F0b+FF5djBx73TkBgjdYxLcmHPp9flfTugZyPOV1TfsHPsXz9dmmy0vWcvKEYLUZKVy7Jw+/dG3askhVKULJCibDbhRC07tmcZTNWBhWuKYrg2h7Nzjo7RkoZUj20OGFz10Ip8QtStYMQCHFuTdovZzTHfhGQns3ItLtyxalO5tb+hXSvgISfg5x76coleWx8/gp7p5OdnsMb/T4ICJuc1BF5++5xfH9gApXqlOe7AxNY+st/7Nm4nxJl40PmsZ+kbe+WrP5jfV4j7tNRVZWm1zcIen3vuoP5WBl6Bux2Cga0q4MEnDYdRnM6X45M59kP/6NdDxXiPgf3KpBZ9B1ej4UzZ5N+LCOf8wiSVkSc4dgBPOBaSpp9JFVi/Dmj1/X5iy+Gg8shA8Iuik5SqrybZ8Yf4LGutTBaDNz+VA9KloMuPd5g5YIoPh5eLqgC1Z7l45fPSnDHo6GaUQswdUQ6fuF0CYRZX8czaWRZXI7Am4uiCN6Y/QIRMfkXL/h8Plb+vo6/pizG4/bSptc1XNe3NUazPxwx6L372PD3ZuxZjrybsc6gwxplYVA+N40z2b/lIBOf/ZY18zegqpImnRrw4Lv3UL1xlUKPUVikdCLt08AxFaQDjO0QkQPPuiG3UM6vvePlzJX1HFZMkVlv+L+gASvyEqQNmf3eeY//94/LyG+1f+EPSwH/I3ynO9sy8O276TXkxrBOHaDdbS1JKBuH3hDocExWE+37tKJ05ZJBx4R6rDdZfETFeQgX1nA6FBw2BafNfx63U8HtVBg9pBTJB7Ih+y2UqMcQkU8QW7Yln655i6j4/PpzSsyRYRagz5i5mSMTeX/mQcpUcmO2+rBG+jBZVKrVc/Duz7vJTtdTqV55XvxhKP1H3smN9zjQ6RS+fLtMGFkB+Oa90jjtgdcqpQARgYh6CtQUTqZdetyCr94Odurg7xk78+O5+Vyn/6nquetf5+27x/HPtH9ZPnMVHw75goH1nyIzxZ/2WKpSIp9teJ8ej3QloWwcCWXj6DGoCxM3vEeZKoVr9rJ/y0GGXDucVXPX4fOqSFWydsFGhrZ7mR1rQufNnytSOpCp/SB7tL/xh+8AOKYiU7ojPVsKHkAD0Bz7BUdKF3jWh9sKrn/O+xwnDqWG7fjjcrhJPhAsvFUQBqOBccvfpO2tLTGY9JgsRqxRFm4b2p1hXw4OeUyDzrXz2q8B3HRPClM3beaGPukYjGGcrYRQTl9V4fcpceDdg5raH5ncEnmiC3FKVzrenn9f2o69MkK8agFL38CX9A2oUMPKl8u2MWrqHp4ac5Cxs3by0R87SShloEn3d/h80we07tkCAJ/7KD6fi4M7w/cN8LgUnupVnfXLIvD5wOuF/xZE8eW7bfFRAXynZvN7t5rDZgt53T6WzViZ73X+/P4stq3cFfBU5cxxcuJgCuMf/TzvtRJl4xk8tj8/HprIj4cm8uj4ByhRLiHfsU9n4rPfhlyfcdpcfDr060KPUxikbQp493D6ArTL4WXaJxbur/0yfUoP4NXe77JzbXDWlMYptFDMBScfFb5Cbc8fKSXlqvsbG5/sqXk6lkhzniDU2RIdH8WLPwzFafcvbMaUiEJvCP+V6fJIe3at2EdOhp0m7dIZ9NoRzFbJrQ+l8PuUBDxn3HsUnUSqoVMhPW6FA7tMgBs8/5L3Pkm45X/LmTu5Kh7XmQdKYkt4adw2h5SjBmJLeNAbAMygr4aw9uL0TktCCIgdD+n3U7uph9pNcxdvhRVMnVAsp4rBbJk2vn1lA3c/oaA3SDz5xPl3J1l4rk91Tm8qYjIfxufszoMvH87bT6eX+aaB5vdeA8z8eF7IVEavx8eS6SvYt+UglXOLp+zZDuZ9tZDFP69Ap9fR+e72eNweZoz7nZQjaZSulMidL/Sm451tA+oUpJSsmb8hrJ1b/t2B2+XBaDo7EbOwOH7idKfudgmG3VqdfdtNuU1Lsvj3t9Ws+XMDr0wbFtBzVuMUl61jl1Kyb/NBnDYXVRpUxGy9tN2XwiGEBamveWqF/kyMLc9pXFVV+fn9WUwdPZPstBzUML88vVFP+9vPr8LQbDUV6v2NKRnFhPXv8f2b0+na69O8Cs7Esh7emLKXEQMq4/MIpARVFZSq4CL5kDHM4qVKpVon1yQCr618tSyGvneQscPK4lPB51EwGFXMESrV6ju4o349FAV0euj1oI17hjdHF/dcyLJ/YWyEjP8ZbF+AZwvoSiGs/cB0XYCDm/zaVOZ+I7j9IYV23TP457dYfN6wwuxn/B9cToXfv7XS/3lX7s0GqtRxYraqOGzB1280G7j+7tqoGU+CZxMoCQjrvWC+KS8XOys1fAs/qUoebzWcT1a/izXKzGMtXyArNSdvcXvT0q1I36mF0H2bD/LBoM/YsXYPD793X+BYBdb9FOFi6hm6+wumxXFghwm389R7JKW/N8Do/h/z05GJV6w8wvlwWTr2Df9s5t37PiIrNRtFp6D6VPoM68n/XulTLMuFRfRL/qKVoPxmyzlrYI8Z+Cl/T/03KAtF6AQ6nS4vfPLOvJcxWS7eTa9E2Xge//hB1GMfBbze4FobP23YzNolUWSm6qlaP4pKNY7xv+bVcYUoOvK6BT6vwOMGQ4i05M635dC0/R7+mm4h7biByrWcfDeuFBuWReL1nPqhT58QQcqRlTw9tiMyZhQQm7dNSjcy63VwzARhAOkGJQoMdYK+R/O//htnjsqwW6vzzLj9rF8aRVYGeN2Fdyo+nyD9hIHEsv6MI0WBx0cd4p3BlXCd1kJPb9QTW9JEjzs+A6cTf8rmQWTWdnD+CbFjEUJgMOmDZAhOx5Hj5LNh32Aw6kk7mhHQbUkNUQjntLmY9ck8bnm0W178XQhBo+vqse6vTUH7A0TGWvHlpw1/thiag2s+J5/Q5n6XgDPEGgSAy+Fix+rd1L7m3FsdXqlcdre6fZsP8uLNb5N8IAWnzZXbdd3FtNG/8f1bv1xq80IijC0Q8Z+Dvg7+e6keDI0Q8d8gDPXOerxDO4+y6MdlIVMLDQY9Nw7oxAtTnuDHQxMDClYuFG6Xh98+mccH/b7g7sqP8M69H7J/Z7AyoU4PLTpmc/3t2VRtUBFFZ6HfE8eJivNhspx0Ov7Zn5Tw04cl6VWjAUkrQ2U36IhLdHH7wyk89OpRhA4yTugDnDr4mzYv+jWK5IMOZMZQLIY9uVkXU5HJbcExDXDltuRzg2c1MrUPUgbKGZyMYx/eY+LJHjVILOemQjUXBpMKSExWI5XrlccaHT61TvVBRHRgmmjrblm8+f0e6rW0YTDpMUeZuOnBjnw8dyORMXYCQnXSAe5/wL2UlCNpYddVTu0PK39fw7+zVge10At7iCqDYvsPvfs/TGGe2OzZDkbcOrpQYxcGETkYOHUulyOfIjGhFPweXKVcdo79+zen43EGf5hOu4ufRv2KO8S2C4WqqqxbuIl5Xy9i8/Lt+eb3CuM1KCVm4otbzvZ9P7Fr3zuounMrmFg1N7zGh9vpQfWptOrRPGRLtKLG4/bwbOcRTHz2G47vPkHygRQW/bCEId0S2LA8VKqeAqjgWca+rS6+eKMMWWn63MyQ01MiBSDwehSev6MamalnXosPzN042Zhj2e8xIUM6ADqdZP2ySMBF6aifkSm9kFkjQWYQnE3kAzUbHLMCXq0UUJ0r2L4ugr1bLXhcCiCQqmTs0jfoNqATRlPwDFanV7mmc1ZI1cv6LW3c89RxjGYjbe+6hsGjqhIdH+a7JO1I+1QO7zga1NYvFKpPhhHFCo3Ppwa13KvepAp9nuoRsrGH1+0jaek29m4KX+EKIH1HkK7l/jz+fBCG2oi4CaCUAmGlRWcn+jAL7z6Pl6qNK7Hl3+2snLuO9OMZ+V/cVcRlF4rZ8M+WsF2ChCI4uP3IRZml7t20nxduegt7lt3f8EAISpSL5+25L4ZMBQT4/fMFTHzm29wiDzAYdQz5aCDX9W1TpLZdzHDUgm8Xs3vDvoCZk+qTuBwK7w6pyJTVW09zLGbARdIqMz+OK83uzeYzFiHDlfcLZn8Tz91DT2aUWCDqcYT1f0heAufvGEzhb2Jup8KsyQkklPbQqO3m3DTy/CYAdqTrH4T1VPPsO4ffylt3jg17hN6oZ8PfW8hJtxEd7yUnU5d3ozFbfcQkeBky6lBIJytV+O/PSGyZdv6Z/C91a+3i5jvziVurmSSUjcPrLlgOoHqTypw4mEqmK3w8/nQMJgNNbwhuwnJg++GQjT1OkrR0G1UahJBYUDORGUP9tQjCCNKD1FdDxH6I0AdLWQAIUytIXAzerdw67ARzv/8CrzvwCcpkNdH6luYMrDsUh82Joii4nR469G3NdQ9fU6hrvZIpshn73r176du3L127dqVv377s27evqIYOwBIZXgjL5/FhjbrwVWYOm5OnO75G6uE0HNlOnDYXzhwnR3YeZVjH1/D5gh97//5pGZ88+TW2TDv2LAeObAdZqTm898AnrJq3/qzO3/LmpmG3mSPNtLu91dle0jkz+7M/Q2bjANiydOzadPLzUMDQjJ8/LcNzfaqzamEUaceNuV2LCkIw5f0yfPlWeVSlDiL2fZSIAQhhRIl9F5H4N9ff1xdzROjMDFUV7Fhv5fUBlRn7dEmkLOipToAIzJWf/WmwAmYo1i9MIuWogetvT6N1twyad8zioVeP8Olf24mJD1faD+Wr+W3yOL3M+PQwUg0XOzeDqS3la5alQu1yKGHa4wGYLEYGvXcfd790e6EWv41mA3Vb1aRW82pB2yJirGEnDIpOwRzidymlRKb1B/d/+MNd2YATvFuRaX1zZY1DI4RAGOqSWKUDHyx5g+pNqmA0G7BEmbFEmuk2oBPLZ64i7VgGjmwntkw7HpeHJdP+ZcbbfxR4rVc6RebYX331Ve666y7mzZvHXXfdxSuvvFJUQwdw04PXh1S2AyhdpWTI8viiZtH3S0MuWqmqJCstm9XzAkv/pZR88cL3IWPiLoebL4d/f1bnL1utNJ3vbh8U9zSaDdRsVpUmnernnXfRj8t4sMFTdI+4m7srP8L0D2aFjLdKKdm0ZCufPvU1nz71NZuWbC1U6bg9VCefXBQFHLaTXzEVlz2NL95KyF1wDM4cCUfpii5ue/gE5ggfs7/yIjOGoSa3QU3ti3qsKfJEG5q3+p5azeLDfjfAr7m+ZHYs/y3IPw8eYUZYTqkk7k06wKal4WV3wR+SaNSxXu5nIpj9TSK7NlkpVd7Nrk1WprxXGqc99M/N5RQcP3jqppR82MLxo3U5PdYM/nUHr08Plj4AvDLtaWISo4NCMopOoXTVkrw6fRiNO9an15AbuXXozRjNp0TDjBYjtVpUw2g2YI4wYbIY6XLfdYz8LbRQVtf7O4Z9b31eH616NA/e4FkHvt3Amb8VFaQNnL+HHO9MqtSvyKdr3uWr7eMZt+xNfk7+Aq/Li9cd/D12OdxsmLclrEjd1UKRhGJSU1PZsmULX331FQDdu3dn5MiRpKWlER8f3KDgfOg5uCt/fbeYwzuP5j3+6/Q6jGYDz3z9WJGeKxzbVu0KO0t15DgZO+gzmndpxK1Du1OlfkWcNicnDqWGHW/3hn1n3QDgyc8eolK98vz07kwyjmdgjbbSc3BX7jktM+jrV39i+pjZeTeU5AMpfDH8e2ZPXMDtT/WgQ59WRMZG4HF7eLnHO2xevj1v398nLaBe61qMnPV8kLjU6VRvUoVD24+E3ObxCKrVO+X4j+z1ovrCjRVKckAy4MWj3PJACkKR6A3+xVCfV0Wnt6N6T2DPVshI1VO+6j7e/OY407/qxjdv7MHnCy1h4LTrmPllCSwRKkKR1GtuRxfwK7CAsX1AGupf3y3ONwwhFLjn5duIiLbS7YFOTH71J9wON8mHjcz51q/lYonwce8zx8Ne+oJpp34nQkDSpoGUrvon0jEXh01F0akcO2DivSercuLYM1SsVY7s9ByaXt+QstXLcHDbIaISomh5Y1OqNKxIYvmEvO+BEIL+I++kz9M92bh4Czq9joYd6mKJMGPP3ELG3veJi1mBybIOHCuQ+mcQhjoBJtZtVZP2fVqx+Od/A777JquRh8fcT2RsiPUUzzp/P9eQ12xHulcE3EALomSFEpDb02TTkq1hF4R1Rh17Nh6gaedg2YurhSJx7EePHqVUqVJ5KnQ6nY6SJUty9OjRQjv2pKSkQp+v/0e389+M9az6dQNup4caLavQ4d5ryREZrFmz5pyu4SSFOd6jc6MzKPg8IRZ1JKQcTmP+N3/z1w9LuPXFG2nQuXZuS+XQ6A061q5de9b2VW5XhufaPZzr6PyzwU1JGwHISslh6ru/Bs1qPC4vh7Yf4aMhn/Px41/Q57WbObozmQ2Lt+A9bdHMaXOxcfEWRg/+kK6PdAj/XijhHqclbpdgUKda3P5IMjffl8PsH0oDwR1+/AiEQkBnpLY3ZdLj/hRMllPvnSVC5aS0vKKA3iCZMSmRQ7vNvPL5Pu54aDazv2zKiUOOsCoL65dEkfSfP9TSqE02fR89QY2GDtJOmPn9h8ocPFyKNncuILGS/7u7dvHGsNcPEBEXQc0ulVizZg0Vrk0krmw0qYcyAt5Ph03HyIGVeOWLfQgBJovMVbqE94ZWIP3EqRue1+PFWMbMmp19mTgwhaiIZNJPKBzafTLckUnGcf+MdP+Wg+j0Ou54vTsNOtUGJAeT93MwOfRipqmcAki2bNuMWX+ImokvU6qUMy/2L11L8TlXsTPlVRyeQB2Yjo+2JKFmDEu/X0nWiRxKVUukY/9WlGkSH/J3E29Np3yMQigBSSkVkpM9HNl1br9XJZ/IkvRJDh07gFxTvDNmztdX5UexWTytX78+JlPh862vbXMtnL/MSgBr1qyhWbMCmooCFRIrsnjyitCOPRfVJ1F9Xn59ax53PnYbLW9qyn9z1qKekfPrrwJsV6jzhrJPqungmIX0HUEYaoL5RoSwMGfin+j0upCPq0De69Nfn4uiVwKc0Ek8Li8rf9nAC5OG5s3+ju1LZtOSrZgsRlp0a8ymqjvZWupfcjJ1uJ0Cnd5f/enI0WHP0XHiiJEv3yrLtvUqlRreAEwPe33la5Tl8U8f5NXeo7Fn2un7WDKWiGDvfHo9itkq6XxbBsNuq8aIByrz7vTj3PtCFd4fHD50oqoCt9N/Pav+imHVX4Ea+Dp9EuvmbuPV6cNo0bUxv5f/m53sDTueggj4XNxvST4b9g0ph9MQQiBVFSlhzT/R3N+qDl3vTKNKHQeH95j444cSJB865dQNZgN3DOvJdV3as3bBRo7v9bIvJ7yY1cnv2fTX59J38G1YIgrfjEVNm4B0uQIWdIUAnXBRo/TPGEr+GHRM8+bNadSlTqG+r1KtjkyeHHKbEEZKV36YMoaahbb3dO58xsEHD00I+eRsjbHQ466bimVNy0kK62vyw+VyhZ0QF4ljL1OmDMePH8fn86HT6fD5fCQnJ1OmTJmiGL7YUbJiIoPH9eeTJ7/E5/bg8wnCqRcKncKSX1by2PgH2LJ8O/ZsR146mcFsIKZEFA+8dfc52aE6/oTMp3P/ciKxQtbbED8Zj9ubb/jgJF6PD1+Y/pkA9kxHXjOGd+//mOW/rkSn1yGEwOf1MuAVO1//uxW3E5IPG0gs68NoVtEpsH5ZJOOeK8+Jw0aWzzXT/fGGCDE9dKGigJsH3UDj6+rzyJj7+fjxLyhdsXAzLqNZxedR2PhvJMvnZtP57mZ89uIBctJthTr+THxeHz6vjzf7fcC0459To2lVFk9bEXb/rNQchncdSLnKDpyuOBZNS8Pl8MeVz3xSSz9h4Mfxp9aBouIjiSulIysthzJVS9H2nmbcN9yvabN7/b6Q/W9DIRTByjlrAxqT54eUEuleihBhMsw865DSHbZJd+FsikFGvwpZr3NSe96PBaz/809EzpEOd7Ri0Y/LWL9wU55z1xv1GIx67nq7V7F26heDIlk8TUhIoE6dOsyePRuA2bNnU6dOnSKPrxcnbhrQko//2MVN/0shvpSbsOqFOU5WzFpFTGI0k5I+4PanelCuemnK1yzLXS/0ZuKG94kL0zUpP6TvWK5Td3KqotUOMhOZ9gBNr69XqMVPn9eXb757dEIkBqOBCU9P5t+Zq3A7PThynNizHbgcHr54Xcf2dVaiYiUVa7qJjvNhtkgMJkmT9tl8+PtOomK9eFxe1i7YyJ3DbwvOhxZQolw8Nw7oDEDnu9tStWElThwt+AnO5RAsn+t//6SEtx4uzf5dlflm14dUbVTpvH7gUkrWLthEx35tw67xxiR4+GDmTl6asIT/Pb2Gh19ewEd/bKJslfAZH6dTr3Utph79nLmOz/hiZSXuvu8TZHIr1IynKFMpJ2wP3DNRvSpZaTmFvTQAZJh2ieC/Ie3fkp8Mc+FQrLcjEqaAqSvoqvoleOM+Rokedl7j6nQ6XvtlGMO+fJTGnepTtWElbnm0K58njaFi/bLnbfflTpFlxbz22mtMmTKFrl27MmXKFEaMGFFUQxdLpOM3KtZw89hbR7j/2eOYreEr+1bOXc8TbV7CEmnmgTfv4usdH/LVtnHc83KfoJ6ZhT6/fRrhBcRcVKi8k1Jh8ulPR9EpVGtcCZM1eGZmshq5/emeOHIczPtyUZjemYLpnyUCYDhjXVSvB0ukj5vuSUVVVXwelf4j+/H0F4+QUDYOoQj0Rj2d727Pp2vezUtVNRgNvP3HiyyZWw+HLbxj9vn8sr+zJ59sNiHwuBU+e+ZXouKi+Gzde3y9YzxxpWMLfB9CIVVJdloOpSolUqtF9VB7MGrqHmo2tmO2SCKjVSwRKuWruhgzcycmS8Gl9od3HvXneqf2AtuXGPVpINPA+Tut2o2ieoPC5Z8jBHVaFr60XgjB3m0lCefbdydFsHNtcC/cc0EYGqLEjUdJ/AMl/guEqW2RjKvT6ejQpxWjF7zKZ+vf4+H376dkxcQiGftyp8gce7Vq1Zg2bRrz5s1j2rRpVK1ateCDLme8+zjZtq3DLemYLGrYx1qPy8PB7Yf5dXzh0rsKhW83YYtspAdH5r5CyfUajHqenDCINr2uwWQxojfo0Bt0mCxGWt/Sgobt67Dwx2Uo+nBfFRGy0vIkZouk7c2ZmK2mvPz7rvd15IeDnzEr+1tm26bw/DdDiE0MfGr5dOhkfvlUMu/HBFwOgdfjn5FL6S/Nd7sgaUUEj99Ug8wzmk1v/GdLXi1B2WqlqRaiN2lh8PlUaubmdD/79aNBs/aGrWyUquDOE/U6iaIDk1nSoWdGgedIPpjKnpXjkL4TBH6eKgIHr3+bjcliRGcI/1SlN+qp3rgy1ZucXdOLpX9el6uYGIjTIfjy7cpEJxSQFqpxzkgp2bl2D3//tIyt/+0s8q5UxWbx9HJDGKognRaQDsxWyZhfd/HSPVU4ut+fx3wmboeHORP/DOoif87oqwNGQjp3YWDPVgsGox53PvFzo9nAg+/eQ42mVXlhyhPs33KQFbP92TkxiVF89eIPrJi1BoTAkR26/ymA2Zr/zNTnVajVojr1Wtc6ZaIQYcXJslKz+eu7JXhcHj59uRyzJyfQoWcGJovKhuWRHNplIirey60PpvDR3J2oKiyZHcv340qReszg/5Gc9jvpPqhLUG1BQRhMeuq3rU3F2v6uPRVrl6d+29psXrotb42gZiN7WJ15a6RK/ZY5/obZ+aDTKxxIWkSVyqE/p4iIE0zc8AHTx61mz8b9xCREsmvdPjJTstDpdXhcHhq2r8uLPw49q+sDaNH9bl68ZxMPvLCP2k3sSGD3JgsTXivHgZ0xNAtRgXo2SCnZ8PdmZn82n/TjmTTsUJceD3chvnSwjtDVRPLBFMbd9SUZR7NQFAVVShLKxPLG7OGUr1E065KaYz9XzD38XV5yKV/NzYjJ+xhyY42QHXEA7Pk4x7NFWO5A5kwKtxFr/LX4vOGfEOJKxzJ++ZsB8geV6lagUt0K7N96iEdbPB+2f2nAqRTJvu1mkv6LoH7L4MVKp13h+LGmvPFdCvJEB6QSC5a7Edbb8Dd4Xu0XtzI0Quj8zR/2bjqA0WzIKwI7uMvMlDGlT9lZy8G70/ZgNKt5/UW73ZVKu+4ZPNq1JiWrNAxYNzi2LxmdXlcoISydQYeiU2jauQHDv38yYNuzXz/GkJYv4LC5cDvcZGXo8LoFBmPwbMvjhvQTfuNMFtWv3hhiUqb6VGITwqWAgk+FMpVjGPLhqVaJUkr2bNxP6pF0KtYpF1bCoiDqt6lN9RY9GX7XQlSfAyHA5/U/HYyYMbRAPfj8kFIybvBE/pqyJG9xc9t/O/nlgzm8u+CVMKGtKx+fz8dTHV4h+UBKQHLDkV3Hear9y0zZ+0leW8PzQXPs54hQoiH2M2TGoFw9agdlK+vQhXliFsJf5FFk59eVhNixyIwn/Q8I0gEiAjAi4r6iSmIVYkpE47QF9980WY387+XbwzqEH9+Zka8c7OlIVbBzg5Xhd1Xh5v+lMui1o6e2YcQUUYLrbl4JePxtkdRjkP0W0vEd+I7gF24RIN1Iyy2I6BFExkXk64Qfe+swZqsakPaoN/iVEx8Ynkz55oG9PDcs2lxodcPug26gz9M9KVUpOFZbpkopvtw2jt8n/cWKWSto0CoVJcznrfoES38vwxOjD1Oljp3n+lQLaqcnFEFcqRiy0/X4fIT87jhtEKmrEHicEFRrVLlINJEGj+1Pm17X8OtHc0k9nEbtljW49Ymbw1ZwSykx6o4jvbtBVxkhQr8Bq+dvCHDq4Beoczs9vHbbe3y//9OrMnNl9R/ryUrNDspYk1LitLlY/PMKrr+n/Xmf57JTdyxOCFNLROJSRPSLEDEIY4lX6Pt835C6HEazkf+92qdoz2/uiCi5BBH1AkQMRkSP9P9tqIUQguenPI45whTQi9RkNVK1YSW6PtAp7LhJS7YF5dufRG/SB7S/A39PT5dDx5xvE9m8phZgzm0M0R8hc/Cnup0+ngO820Bm+UvLT0rmOmYhs9+hasNKxIbJFDJZfNRtbiNUbwW9Aa7rlROkzx1TMjqkMmEoDCZDSKd+krSjGdgybfR8IIvOtyazZ4sZp0PgzS0DUH1+0bKfPi5D664nuP72DOo0tfPA8KMYTWpe6MYSqSO+dCz9nr+VnydUxO0KVSUr+PXL2mGdZ1EghKBxx/q8Nv0ZPlzxNo+OeyC8U3ctR6Z0pk7JZ5GptyGT26Dafw3ez7sPMl/ik/nr+XDuDrr0S0WnP+XIbBk2tq7YcYGuqHizc+3ekA3iwV+1vm3lriI5jzZjP0+EEgnWO/Ki6ne+IHG7JD+/NwudQYeUErPVxLAvH6Vms2BxpfM/fzRY+4XMxqvfpjafrnmXH0f9yvpFSVijLHQf1CVXWja8TEBknBX2hTkfAr3JgM8bHKZxOwWzf7iBBjc/DoB0rfDPzHN/04d2G/nqnTKs/CsaJDTrkE3/4UepVPPkWE6wT4XIJ3npp6cY1vHVoAIUvSG3OXSYslJFCS60umng9Sz6IbR+/Zks+mEpg0bfG/S6lJLPhk1m9oQ/8bi9TPx7C+uXGnlzUGXKV3XS/b4UqtRxkZ2pUK2uk9+/jeWLJdvyFpZ7DUihdddMFv4SR/oJPXWa2WnT9xHS0uvz8eMGhverxpPvHaR0Bbe/gMol+HpUWVRj+BvwxUS6NyDTHwac/puqdAN2yHoFVRhQLDfn7rcamTaAxq2dec588MjD3HB7Os/3q4bPKxA6hYwT4cNPVzIxJaIwWYwhdeQNJj1xpc8+9TkUmmMvYoQQ3D+iH32fuYWda/diship0azqJWvfVb5mWYZ9Ebr5dDh6PNyVT4Z+HdIRRsVF4LCFnnFICScOnZaJc1qbswM7TTxxcw0cdgWp+m9DK/6MZt2ySD6YuYuqdXPHFHrw7ePg9jR8XjWvQ9ZJvB4z9hwDMfHhFoVlUGFNnZY1uHFAJ/74Yj5Oe/4hmXBSuP/+tpo5ExfkpXy67IIRD1TG5dCxfX0E29f7tVL0BpWaje1UqO4MmKUClCzvod/jyadecI2hdMUbqNemNklLtvLQdRGULOfGaFY5ss+EEDra3+Fm89Jl1GlyEIELjC0Qhrr5XsOFQOaMIbgDGP7Xst9Fmm/y75fxNOAI0N+xREhqNLLT+fY05v+YgNfloWrDc8tUutzpcEdrJgz7JuQ2IQQ3/C+8fMfZoIViLhCWSAsN29elVovql11Pxi73X0ftFtUCVAP1Rj2WKDO3Dr05rAAa+HW5X7ttNGnH0sHQKHdmB5NGlsFhO+XUwT/zdtoUPnv1tIIS6eHwbjtjH/oMj8sT4NSFIogrHUd0fH6zGpN/QfYMBo/tzys/P0nzjtkoujCzfZ2gWZdGIbdNHT0z4Lp//LBkSMlhr0dh1yYre7aaw8bfT6EiHb/y8tSnqNGsKiarkfQUK0f2WVB9Ap9XpUTsdKqVfwDXiRGo2aORqf1Q0+5HyqJbiC8U7ny0jNRUUNP8fX1laFVFS4Tk5v+lYjDpadK5wTkv+F7uRCdE8dSkhzGcFtJUdIpfYvn9+/xCZ0WANmPXQFVVVs/bwF/fLcHr8dKm1zWMnP0CS6f/x+yJ87Fl2GnWpREtujVmxO3v5ytVcLK12r+/reamAZ3p9/hNlIj7gzWLooP6mvoRbFwRicct/L1N9VWYPm59nozBmWNnHE9hyyo7Sf+VoFPvTKLjvQjhlzPISNVTv6XCgW3H+H3y1xzfd4KaLapx44DOxJWMoUW3a0mo2I1t837mk5dKBS1mGi0m7nn59pDXdXx/4CL02sVRQW348uyUkJNhYPWiKFrekBV2Qd2/oHyCqLhIxi17k51r9/D+I5+wb/0h8Plo0Skrt7OSxL/InPu04V6DzHoNEfNOuIGLHmGEsPrpau72HCD83SwyWqVhh3pB2UZXG53vaofbaGfHX/vZm3SACjXL0uvxm4q0QZDm2K9yPG4PL970FltX7sKZu6izcu46vn19GuOWvcEN9556NHyx+1t5+xSE6lOZ8/kC/p5mZdyCnqhyW777S2kCYUTEjmHf5sn4QjRbBhCKhy/eLM3OjVa+fKssieU8qD5B6jEDJovKLf3T+PWrn/F5VHxeH6v+WMePb8/grd+HU79tHdId7bjxsetRjGP5cmQ69mwFVdVRqW5Fhk4cRIVa5UKet3ytsqQcTsv725alJ5w+kCd3IXTcs+WZsHA7sQm+0O3phBVhbJz3Z7XGlTmYdASfx+/A+z1+HLM11E3UBY45yKiX/Gs8FwNz99z+sGfecAUYGiOUKKS+dt4T2pmoqo648l1554+XLriplwMlq5Tgxk+7XrDxNcd+lfPz+7PY8u+OALkAZ46TY3uO89GQLxn+3RN5r69dELpTfTikKrFl2pkw3EL9NrXYtCR0JkT1hmCMH4iw3oXQlaB8zbJs+XdHyMwc1SfYvs6aN1t22hRKlPHgdglyMnVMm1AioPuQX0TLw6u3vsOPe+6kbPR8pKsWXR9+nS6PlCb5QAomi5G4UrEB59m1fi/zvlxExolMGnaox61P3MTWFTvPWHcIl2njfz0jxcD919Zm8optxAQ5dwHCAuabkKodPCtx5rgDYvzlq+Wz2Cv04DsKSuFlBM4HETkE6foL1HRONc7QgbAgov3yIUKJRlrvAPs0zozHKzoTkSUfvyi2amiO/apn5sfzQmrAeD0+lv7yHy6HK69C9FzSjqUqWfvXJkb/9Sov3PhGUDaAyWLk4bEvoUSdauzQa8iNLPphaZBdVes56HF/Cp+/XgajSfLE6IO07pqVG8aRrFoUxZinKpCTGfi1TijtYczMNZC5jlJRTsiZh8z5CCKfpHTlAZzJxGe/5beP//DH+FXJitlrMFlM9Hy0KzM/nAtC+B2w8Itv5XP1lKnk4cj+SGITJUgPCB2ggpKIiJuItP8E2e+D0GGSYI2sTE6mP5yRdsxAbEKYxV7pgdyCrouB0JWAEr8hbV/gzpyO0SjA1AkRMQihr3hqv6gXkAiw/wTCAPhAJCBi3w/YT+PCcnmt6mkUOVmp4UWmFEWQk3Eqs6V518bndhIBVRtWZNT8V6jRrCo6vQ6dQUfVhpV48/fhNGgX2K2nWqPKPDzmPoxmQ566YbUGftmGOk1tuN2CZ8bvp3XXLIxmSUS0itEsadEpi/d+2R2k2fPypH2UKO1Gpzs5i/QALsgZhzxjoXXtgo3M+tR/szvZNN1pc5GZmsXKOWuZvOsjHnznHu5/vR/v/vkK1ujwPXYr13Yz4a/91G17E6Lkv4iEHxAxbyLiJiNKzAfvdsh+D3CAzEGQw62DkvPEw6Z/lnhaa8HT0YPxWoRycdVThRKPEvUMm49/jFLyX5SYN4OctRB6lOiXECWXI+ImIuKnIhL/QhibXFRbr3a0GftVTrnqpdm3ObQ8q86gI6bEKSGoge/cw6o/1odNCQxHYvkErNFW6rWuxSerRmHL9EsPRMSEaKeWS/dBXWh5czMWTFlM2rEMbr3/T+b9mMC375VE9Sm8/UhlSldy8fQHB6ndxC/GZjRBqQpuml2XzepF0f7rq+qiSl1HkFCXHxfS9iXC6O/XmZ2ew6dDvw6d9SPh4PYjZKVm02vIjX7RLk8ST37YjLGPrsSec8aTiNVA/zf7Ikp2RSi576GhLi5vNTb9vQ2fZy11ao0jMjIwZNFvSDIHd5pZNjeWv39LpGkHG21uzMBoliiKBKygK4GIGVXwG38JEUoUGEP0QdW4KGiO/SrnnpdvZ/QDnwTlrJusRno/flOAXkjF2uUYt+wNnu74WqEXUQ0mPQ+OuiegfDw/h36SlMOprPpjPVFxkVzXtzUrfpjMl2+VytPh8XkFB3ZYeK5PNT6cu5OKNfz2WyNVGrfNyXPspSq48XoEWEItQspclU74b84aRvb9ALcjfFxb9amsnreKyhU+9jdiFkY6dJFcs17yxkPl2bI6Pm+/B9/9H617By6O/f75Aj4b9jX1W2YTW8LDVxsVrulcmvueO5YX5tLp4PmPD3BgZwqrV71MtsdEDlZKRCwFbAhjezDfcF4NMPLDaXex6Iel/DPtXwwmPdff04G2va/JV7Nfo/ihOfarnA53tGb7ql1MHzsHoQgUIZBA+9tbhZRAqNmsGj8e+ozv35zOvK8WYc924vWE69YkKV8jmva3twp41Wl3sXv9PoxmA9UaVw7I85dSMvHZb5n50R/o9ApSSlSfilRL+B30Gbhdgh/GleK5jw4A4PX4F1RPcmy/EYMhXHqmAH1V9m0+yOt93sXtLFg/vVrVyeDcD7jzMkAsVnhjygHWrx+I11eBRh3rB8lKrJy7jr++/pAvFp/SadfpJbuTLMz+Jp4e96UF7F+xhpdKbXsixMlHjQtfgZpxIpMh1w4nIzkz76llw6LN/DxmFu8tfDWsGmc4pHcXMmciuFeBEgWWOxHW2y7YTUnjFJpjv8r546uFzPx4Xp4ErGIyEBFtITIugnsqD8aW5aBGkyrcO+IOGnWoB0BEtJUHR/2PB0f9jz0b9zO03fPYs0OFZwTpx04gpQ8h/PIKP74zg+/f+gVFpyBViTnCxNNfDKblTX6t9nlfLWLWp/PxuDx4XIFjhUL1KaxdfCrlz+cV/PNbbN7fR/aZ2LXJQq0m9qBwjJRGPnleMvvLp1F9flExv+Z76HNFxXmp33wXefnkAdZ5aNLqP5SYXiGPnf7+14z4ejvWyMCbR82GdnQ6eYYImB7MXU9z6heHj4Z8wYlDqXnpluDXL9mzYR8/jvqV+17rW+ixpOs/ZPpD+GWlfX6poOy3kc5ZED/5ol/b1Ya2eHoVs2/zQT567AvcTneemqPH5SHzRBYzxv9OyuE0HNkONi7ewos3vcXCH5YEjRGdEInXHV4JMirOBx5/w90Z4+fw/Zu/4LS5sGc5cOQ4ST+eycg73mfbyp0AfPfm9EJpupyOyZw7IxcWDh/qwMFdgQ2d33ioMscPGrHnKEgJLqfA5RRMGpnI7C9OoPr8+eiqKpBSYDCqtL0pg1sfOkHLGzLzKlVrNPL6C3FC4gN3+K7z9ZqtRxei4tVggsq1ndhyM2F8qhGUkn5huYuIy+Fi+cxVAU79JG6nh9kT5hd6LClVZKZfWiDwJugEzzqkPXRJvUbRoc3Yr2JmfjQXT7iF0DN8kMvhZvzgz2l327UYjKdmWyXKJVC1vsr2dYFyAeBXYrzlgUzATU6GjS9e+D5kc2a3w803r07lrbkvBlV4Fozk+jscoG+AiHyQam27Uq3Rs+xN2p/rsCEt2cDA9rVp3jGb2k1tZGfoWTwrltRjhqALrdXExptT9qLTSwxGFY9bwWlXeL5vNXy+qDCLsLkogQ0kpJTg2YB0zqVrv1RMIeP8fuljc3QFMMRz5EQDKtZ8EqEUvA5RlNizHPnK6J6eHQXS33MXQCkVfJx3S24Vaih8kD0aabpBS3+8gJz3jH3mzJn06NGDunXrMmXKlKKwSSMXqWah5kxETemNmnIbiRG/I9XgZhbnyv6th8LK84a0R0qSlgZXkD47qSmRMT6M5lNjma0+6ja3c+Nd6eTYqvBwk2dCOnX/uLAlV8b1bHvACqFQrdUIlBLTEeZuCCF4a+5wKtWtgDnClNdSTlUFK/+K5pvRZZgxKTHXqQdijfTx9g97iIrzYY1SMZjAGqUSm+hl1LTdPDvlfYQujKSvsCCsd592TT5kxuPItPvA/jUlSrsJ1/1M6HSYEl9ESfiRFFu383Lq0vUfaupdqMcboSa3Rs3+oFDfmegSURgt4WPfFWqVzR1/GXVKDkWeuMH/X8r1SNc/gTurNvKTFgAVmfVGIa5G41w5b8dep04dPvjgA7p3714U9mjkIn3JyJSbIedD8G4G7ybKRP+ETO2JVDOC9j9xKJWje4+j5tN5/kwq1SkfpK1eEB5X8Ay/fIOH+HLZYe4eepx61+TQvGMWw8Yd5M3vj6KPG8R3b8wm9Wh6vuOaI/zhk56Pds3XwZyJlJK9mwLTNeNLx/HZ+vcY9ecrtOjaOHyB6Bl07J0eUiBMUcAaJUhM3IiIHZvX0CQPYQXjtWC++ZRd9m/BtRh/OEIiRPgCL6PZDMbWhbJRSsn6RUm8P+AT3rxzLAu/X4InNxSmOuYg0x8ET25XKjUFbF8i0/oWKBqm0+m445lbMIXoJWCymrj3tTuQ7lXI9EcwG47j19h3ge8gMn0I0rX81AGGOmGlBfJwL0HKwjVz0Th7zjsUU7OmvyvQ5aZgWNyRWW/5f5inxSh1iht8x5DZHyBi/GXcSUu38sGgzzi2NxmhCCJiIhj0/r106ldwJ/heQ27kz2/+wect4EeYi9ftDdkFSuhKElP9J7o/9Dj9huzxl7tjhMihCOt9zJ/8QL6573qjnm4D/Fkfd75wKxv/3sKOtXvyUir1Bh3eELFf8PdtjYwNnuEKIah7bU36PteL9YuS8lWkPEmVOk4sEaGn1UaTF7x7EOauUGJuruNeDkoMwtoPTDcENsSwfcXJZudnIiW5beh0KHojuvhPSDmcxcZ/tnDw8AFq16hDRLQ16Difz8eI295j3V+bcNldSOlP05z82lTGLxtBlPoKwdK6LvAeRNpnICLuzPf6+z57C2lH05kzcQF6ow4Q+Dw+7n3tDtr2boma2ifE+ABOZPYohGkmkCstYOkLjoJi6T5AW0S9EGgx9mKIlB5w/Umo7AvwgHMmxIxg59o9PN/tzYDFRpfdzZiBn6LT6ejQp1WI42Hdwk18+eIP7Fq7B0WvQ9EJdAY9HqcHS6QORXHTtH02K/+KzlNANFlN3PJYt5BOFEDoq7Az5TWaNqnqfxTXlUYI/9erIKdaqlIJ7hjWEwCjycDoha+yZv4GFv24DJ/XR4N2dfh06NchQzkSaH9H6OsEqNe6FjWaVmX7ql0Bx+uNOnR6PVL14nb63+djB4y4nOLUYuzp1ycsoPN3FhK60oioZyAqaLdTqKlhNwmhgL4BuohrUE13MWbwb/z13Tj0Bh2qqjJtxO88OOoeej12Y8BxsyfMZ+2CTQGftyPHiWf/CX5+9w36DwuX1ukAx89QgGNXFIVHxz3AnS/0Zv2izegNOprd0JCImAikVMGzMfzB3u0BOvgi+gWk83eQKaH311VGCHPobRrnTYGOvXfv3hw5ciTktuXLl6MLr0l6ViQlJRXJOOfLmjXhMxsuFopw0rBMGEVAQKp21qxZzVdPTMMVoqDGZXfz0ROfE1HFELSwtemvbUx9dfapkIrHh6JXMJgk3e9NoU5TB21uTMPr1eFxwfC7anFgVyQd7r2WJrfXLvD9WbtuT+6/jp+0llsHu+jUcweJZTwcP2jkx49K8s/MWEBgshp5cNKdbN2xJfA9SITOQ0457I4PtGbhl8v92Tu5M169SU+3R9uz/+he9h/dG9amPm/eyK/vzGf9/C3+fHspSayUQPt7ruHwjuNsXbQGR7aHI/vC57z7VJWkraVQZeG+H3VKxWHWHw+5zaca2LR/GBI9f3z8I8t+XI3H5Q3oMzvx2W+wq9nUanOq69YPo34JmTHk9fjYvnobOVkqFmvo3ql2eybbz+K7HVPTL5WwbdfJNRVJ47IKQoR+cpIS1q1dz+mx9Ujjw1RLGIWiBN6QVdXI3pTbyDpw4X5rxeF3XBAX0kYhZbglnbPj+eefp379+txzzz1ndZzL5SIpKYn69etjMp1dAURRs2bNGpo1a3ZJbQB/HFWeuA7Uo6F30FVHSfydHpH34AyTGmgwG/h298cklDmVqeHz+bij9IMh9WGMZpV7njpG38dOZaVIQJXxiIR/0BsL/mzWrFlN0wYCPOtBRIO5CzJ7ND7bTHTKabNMm2DONwl8+35VHv7gPm5+8IYCxwbYuHgLP4+ZxeGdR6lQuxx9nu5Jvda1CjzOlmXnidYvcmxfcoAImVAERpOB8jXL8soPXShdej54doBvJ/7lJzdgAqEgYj9FmAoXBwdQ7T9D1kiCwzFmsN6JEv0CbpeH2xIfCFvFm1ghgXa3XUvNZtVod1tLbi81EEd26PCOUEAIicEg6dwnjYEvHSUi6uR6iwkiHkKJGlJo+0NeU/pj4FpAYP9aAAHGdijxnwcdI52LkFmvwcl1ISUSol5GsXQ7L1vyo7j8jvOjKGzMz3dqoZhiiBACGfkEZI0glGMQUU8B/tg0YRy7VGWegNZJdq3dGza90e1UWPBzfIBjF4BOcSHkf0D+ndOlmkHNxBeR6cdzVQz1kPUaALozZmyWCEmvgSn06G/HZB6CeqIMWB9BWPvkm3LXsH1dGrY/+7ZwX774A0d2Hwta+JWqxOVws2fTfp7s+BPf7P4Yc6wJ6TuGdEz3yw3oayCstwcJbkk1DWn7Dlx/+XXkLbeBpRdC5CphWm5Derf5VQ79t0hAD6ZWiKinAUg9kkbYVBngxMFUfhk7B0ukmQlPT6ZUxRJhdX2kChKByyeY/1M8W1ZF8NEfOzEYhV/3PeLukMedDSLqWaR7BVLNQYiTzl0BEYGIHh76GHNHMF0Hvv2ABF0lfyhK44Jy3u/w7Nmzad++PX/88Qfjxo2jffv27NpVNJ22r2YU660Q9bhfs1tEgojEp5ohajjCfD3glwM4mc53JtWbVCE6PjAI7POp+Urv+kL5fOkD3+EC7ZUZQ7EYDuT2OfX4szLwcEq7OxCdAUxmO6D6x89+E5n9VoHnOVuklMz/elHIbJ68fVSJw+bk7x+XAf4YuhL5KErsaJTIh4KduvcA8sSNYJvoz9n2rEdmvYVMvcOvrY7/5qxEv4Qo8Tsi6mlE5FBEwk8ocZ/lxaGj4yPxefPvwQr+OHrmiSwyU7JCZq2cidetcOyAiWW/x4PxGkTCz0WiBCn0FRElZpJqbw8iJveprCciYQZCXzX8cUIg9JUR+iqaU79InPeMvXv37lqq4wVCiRiAtN4F7nWAwqYkSdOyp+LO977Wh+UzV5KdlpOXNaIoApPVxBOfPBg0XvUmVYIKj05iMKq0uzlEv0qhA13+hSTSewjcq1HCxF9DEXx/cYD9R2REf4SubIgjzg0pZaEyYpw5LtYtSqLbAwVrssisF3N7e54eknCAdw/S9gXitJCH0FcAff+Q40TERNCkcwPWzN8QtmNU4HVkc/3dzfnz23X4fGrIKtG867Er/P1HdzoOegac81BzPgQRibDcAoaG+T4Z5YfQleNgxiBKViveoY6rHe32WcwRwoIwtUaYrkUSmN99Ml+7+8NdiE2MJiougg59W/Pxqnf8TvwMjCYD/d+8M2jWpygCc4RKr4FnZjAI/6zM6L+Z7Fizm+e7juQmy130iLqHd+//iOSDKf7H7CIRdhLgXFgE45xCURTKVC1V8H46JU+i2GFzMvuzP3ntttG8N+ATNi3ZysmlKKlm5DZ2DuWIXeD46azse2rSI8SXiQtoHB4W6aFug+l8u6lyoQq5FCGRKd2QWS+D81dwfI9MuxeZ9QJFtLRWIFK6kM4FSMcMZK6SpsaFR4uxX+bElYrl0XEP8Oi4Bwq1f6/HbsQSZearF38kMyULpKRJpwY89kF94mJfwZ9X7PAX4QgrIv4rhFBIWrqV57ud6oDkccFf3y3hvzlrmbT+UWJ14atKpfQX+RSMSmiHedoeqsr2VbuxZdqp0bQKMSWiCxz13tfuYOzDE/PVoNEbdXS9vyPH95/g8VbDsWc7cNpcCAH/TF1Om94teW7yY6Dm+NcPwhXXyLOrDE4oE8cXW8ay8Lt/OLr9N3TKHg7v8rH8jyg8rsA3TQJlKzuJjfgZ1ds033FNViMdb9kOvmOc6lOq4k99nAvGNmDpcVa2ni2q40/Iehb/85kK0oc0XouIG+9PH9W4YFzRjv3wrqPkZNipWLsslsjL64sk1TSk4zfwHULoa/ibCRcRXe/rSJd7ryM7LQejxZgnMSvVTuCcC+oJ0Ff3tz7LVeEbN3hSUFs71adiy7Qz+fXVPPFmVVT31txmEKdw2gXb10dQr4Udg8mcW5EoCZ2jL8AUfpF24+ItvHXXWOzZDhRFwePy0Pme9jz+8cAA3fgzuf6e9pw4mMKUkT/jU1V87uBzK4oOvVHPm3eNJeNEVp7UgpT+PPxlM/5j0Y1N6NivJch8Go3o64XfFgazOZUbe78LvhRU1YXHJXniXcGIByqzYZn/KUIokoRSHuo088fwazTIYM0/4RPpy9csSavOfxLcfBrA4W8wcgEdu/RshcynCSpocq9AZr7gr+DVuGBckaGYXev3MqDeUAY1Gsaz14+gT6mBTHz2W3y+wseALyXSuQiZfB1kjwH7N/6FuRPtsBqKblFaCEF0QlSAbrhQohDWOxCRjyJOk41NO5bO4Z3HQo7j8/pY8vMKROyHZGX4FRQhVxfdIZjxeSLP9anG3c0akeH7GhJXgL4OcGboxgzmLgh95ZDnObTzKC/e9BapR9JxZDuxZdpxOz0s/H4JHw35osDrvfOFW5l6dBK3vXQjBnNwtaPL7uTpDq+wa+2ekPo5TpuLX8bNyW3MkU8YI6JwT04nkVIi0+4H3yHAgaKomCySiCiVN6bsJS7RjSXCR3xJD29+tzdv8fvuoccwWUL/fGu1qMaYhfehN+YTHlND59gXFdL2Of500TNxgXMB0hemcEmjSLjiZuzJB1N4usOr2E/m++b+77dP5uF1exk8NvRCVnFB+lKQGU8QONNxgIRqJd5Byt4XvVGBz1tANo3Ph9BX4NGbm9G4xUEatckhI1XPgqnx7N/hry70es0cO2Alvmw0Mv5bZPa74JiBv9mxGaz3ISIfDXuOqaNn5mminI7L7mb+5H944K27grKAziQiJgK33YNOpwTl6kgJTrsbkU/MKO1oOtL5K+EduxGhnqU6pWc1+I6EHNNglIycspfkQ0ZaXp+VpyypqlDvGjtPfxTL2CcdeSvRbpeHbv078diHD6AIGzI5H6kIfbXw24oCz0bChtWECby7QVfiwtpwFXPFOfZfxs3B7Qr+QrvsLuZM/JP/vdrnrBUELybSMZ1wjkPgA+cCsNx0UW0qUS6e2FIxJO8PnmUpiqBFN3+j4piSJVjws40FPwen1rmddkpWyC03VyIQMSOQ0S/50yNFZKDOSgg2Ld4aNnPEaDawd+MBGl1XcBjk6M5kXHYnzTpkc8Md6VgiVFbMj2LhjDjcTjeKEvoOJgRUaVAJ1HRCh5HAH0cOJ1cbGunZRriUUCGgen0nNRoEhjP8654mOtzRjjZ39WXD35txO9zUbV2LuJIxuXtFI803gvMP/IJdp2NBRDx8VnaeNUrJ3Nz1EEgP6BIu7Pmvcq64UMzqP9bjDRFDBTCYDOxcG770vFjg20fwD9GPEJ5C5ZQXNUIIBn/QH9MZqotRsV76DE7jiXe3oWaP5vr7a2KyBj9N6A0qjdtkE296OiAbQwgDQokp0KkDRMWHl7L1eX1ExhVO6ja+bBQjJu/n5Un76dg7g2u7ZDFoxFG+XLqdslUENZtXwmgKvrEazXrufKE3wtjSr+YYCmEEQ6NC2RFwTD5ICfYcBa8HHDYFl1P46w2ECWHphdFkoEXXxrTpdc1pTj136JjXwdgEMANGf00ERoh6AmFqc3Z2niUi4l4g1LqWAF0FhL76BT3/1c4VN2O3RodfJFVVFUtkMRce0lXH/0MMLjOX0gCXqDlBm17X8OKPQ5nw1GSSD6ZQo2EO7/y4G6NZh6IcANsSevWCeF0tPn5BYrfp8LoFlgiVUhXcPPvhfvAawbMBjI3P+vw9HunK3k0HQuakxybGULVhpUKNc/M9aVRIyMZsPTX7t0SoGIwqj7+zg0o1k3h/aHk2LI9ECImiA9UrGPzmYeq1KgmiCmS/B9JJYKjBALrKYDjL/G5TJ+DlsJtTj+l5d0glaja24bTpqH+tm463GhBxnyGU/J88hbAg4r9Berb4+44KC5ivL5JipQIxdQHzQnDNyy1Wk4DZf0OKG3fhz3+Vc8U59psfuiGsAzBbTdRqcYFji+eJsPZG2saHjMao0pDrCC4NrXo059ruzchOyyDC0xWBl1NZF14UAdf13EyH7rDh3wg2Lo+kfksbjdvm5KY7+vyx13Nw7J3ubMuiH5ayacnWvM9Wb9BjMOkZ/sOThS64qVB6EWaD3yEf2WckK01PhepOIqJVGrayoSjwxpS97N9hYvPKCCwRKtdcn0VElBFpn4oS+TAk/IRMfwy8u0AY/Jk+xhaI2DFnXfij6BJR9fX8mvtn4PMpLPqtGvt3JqKzlOTu52rSsEMjMDQ9q/MIQ10wnL0Uw/kghICYd8DdG+mY6teKMbbJlWeIKfB4jfPjinPsne9ux9wvFrJr3Z689DxFERjMRp77Zkix140XSjzEforMGJzr3O25jR0M7E55nrrlLq1+tRCCqMgNyAxP2DVEoUDjNjYatzkzp1sPSsF556HQ6XWMnPU8/0z9l9kT5pOdnkOTzg247cnulKoUpqtRCPRKFvt3mHh7cCWO7DGhM0i8bsENd6TxyMgjKEb/RVWq6aJSzdMnB06/uBn4K2MTfgbfAfAdBX2l86qWFXEfI1N6g8ziVPzehM5cn76vTqbfaxd3sbyoEEKA6VqE6dpLbcpVxxXn2PUGPaP/eoW5ny9k1qfzyMmw0aBdHe58obd/8esyQJhaQ+JS/8KXehR0VcDcBcehTZfaND++434NmbNGBdP153xanU5Hpzvb0unOgpuIhOPYsQo81VPBlq1DSpEX8VowLQ6XQ+GZ8aFFtvxiV6VQcyaB/Uu/3rqIAeu9CGPzc7YHcm8UiX8i7dPISZ1JZFSiX1TM3CVP0/5Mtq/axep5G9AZdLTp1YIKtcqdlw0aVxZXnGMHMBgN9BzclZ6Du15qU84ZoUSC9fZLbUZo9NX80/JCV6UrgBFi3iowLnyhmf5VfdzubX6nfhoup45/ZsXywPCjJJQOVdRjBPUI5PxKXg6tzATbJKRnA8RNOmf9FfB3HRKRA9i5vTHNKoWP07tdHl65ZRRJS7fhcXkQiuDb16dx/f/a8+SnD52XDRpXDlekY9e4wBia+Wer0l7Ajgroa4C+NiLiAYShzkUx7yS71u/lu5HT2bR0K5YIEzcO7Mymxdm4naHDcQaDZOvaCNredLoYWu5NydoP7D8SvKjtBM8qf5jG2OTCXMhpfP78FDYt2YLbkZsi6QOfx8fC75ZQs2lVbn6ocNr2Glc2mmPXOGuEEEilRPhGIAAYwHI7Sm5v1ovN2gUbeaXXKNwOD1JKMk/Ad2/+kn9jawGWCB9+Z24CQ0N//Nx6F7iWIUOW5wPSiXTOQ1xgx+5xe5j7+V+nnPppOG0ufnp3pubYNQDNsWucK749+W9XSuU1BLnYSCkZ3f/jIG0bt8ONTq+gN+pDNtcWAhq1dvk1cqJfQehK523zORajen3owv5iLrxaYnZaDqqaT2OOQ+H7rBY33E43B7YdxhploWy10gUfoHFWaI5d46yQUvpTFvOVfVUg4YdLlta2Z+N+stNDV4D6vCqWSCN6gy4vbVIoAqPZwLOTH8RQvlVeF6STSKmyeeka6jYOfc1ejwGD+dwXhQtLZFxkvtIO8aVjL7gN54uUku/enM5P785EEQKf10epSok8+80QajUv3qnIlxPFO/dPo1ghpQ+Z8Tgy7V4gXHxdAWNLFF3BGugXCpfDjdsZRlYXMFoMPPbhAKo3rULJiiVoe2tLxi55g9a3XBfk1AFk5jNUr7MkpPSw0yHYusYKhuZI6UU6fkdNewA1tR9qzkS/fnsRYTQZuOHe6zCGEDEzWU30GdazyM51oZgy8md+eudXnDlO7NkOXA7/zH1Yp9c4sju00JzG2aPN2IspG/7ezBfDv2P7qt0YzQauu6M1ze44e0nYokTap4BrMcF9WP34VCM6XSQipuhb3J0NeoMdmU/IQigKXe6pxg29JLj+A/4D0xGk9wnEGZW90rMF6fwTsyVYp0ZKWDg9jk9eKseoPzdSr+5o8CadWlT2bEHavoCEaUHjniuD3ruXvZv2s3vDflw2J0L4azRa39K82GeBOe0upo6eGbIBu8fpYeromTw5YdAlsOzKQ3PsxZDlv63irTvH4nL4Y8ROm4s/v13MslkrabKlSaGaS1wQbF8SzqmD4Fh2L8rXGIZQYi+iUYFI9xqchx/FYCyHxx36gbRidQ8ytXduU4xch+2cg3QtgoSfA/p3SuefiJDys+DzwfGDRjxuhX9/Gkbdl44jArJmnCDdyMxnEQk/Fsn1ma0mPlg8ko3/bGHFnDUYjHra394qZMesc0F69/qF5vCCqQ3C0LBIxgXYu+kAii70Z+Lz+lg9f0ORnetq57wd+4gRI/j3338xGo1YrVZefPFFGjRoUBS2XZWoqsq4RyblOfWT+Lw+7JlOpn8wmwfevOsSGZefhraRNHtHKlxKpy7dyPSHqVg9BwhTsCPgodeO5Kownj6rV0HakFlvIeI/P+11L+HkZxUBOoN/jBvvPoYIKd6mgicJ6TuB0BW+QjY/hBA0uq5eodQsC4uUEpn1Gjh+wV/9qkLOBKSxKSJuQsgQ1dlijjCF1Lo/iSWimOs4XUacd4y9ffv2zJo1i99++41BgwYxdOjQorDrquXA1sPYs8KEOjw+Fv6w9CJbdBq6MuG3CR1e9RLLIbv+AbxEx/u4rnc6RnOwEzGadVSve4jQWSwS3MuQp1XVClP7XFXEEKdzKqxe5NeAj4zOp6uSMOQ2vy6+SMfP/r6ouDh1M3OAezUye3SRnKNyvQphnzZNViM3DuxcJOfRKALH3rFjRwwG/2JO48aNOXbsGKqaf99KjfCovvybWuQ347ngRAwitBSrGSz9KMrInpQq0jELNbUP6olOqBlP+lUK88N3PK9t3ePvHObaLpkYTSrWSB/WSB8RMYI73+yJEPm9h5KAGbqhOejrA4EzVlfuoun2dX4J391bIvNJFFJBVz5/2y81tom5Koxn4gL7NKTMp2lHIRFC8OzkxzBZTQEhGZPFSPmaZbn5oQufWXS1IGQRtiv/6KOP2LZtGx999FGhj3G5XCQlJRWVCZc9qk/lja4fYs8M/pHp9ArX3t6EHk9fqiIUSfmYr0mIWITfAUqk1JHjqsfetKeQRebYVSrHjSXavBGd4g9vqFIgpYH96UPIdIbWZok0bqZqwnvolFNx7uRDBravt2KOUCjZ4AbSXL2pmfgSEcbdIcewuauy48SbAa8J3JSN+Y4E69943R5Un2Dud/F8+VaZvDh+4/Zu3vp+NzrljBCaauSErStHsy5R+KyQNCp7L4oInUmkqkY2H/8Ar1o0cr/Hd59g4Zf/snftAYxWAy1uaUSrO5qFzPbRKJj69etjMgVOPAp07L179+bIkSMhty1fvhydzt8kYc6cOYwfP57vvvuOEiUK3/LqpGMPZdzFZs2aNTRrdpZ62heAeZMX8eGjnwcU2AhFYI4w8eWWsZQod2m7z0jvAXAt8M+OTW39srAU3fsnnYuQmU+GnkGKSETJFSHbA0opkSldwHeQoLi4sCJK/MXa9fto2kBFpg0gWB7AjIj/HGG8JrRd0s2WZat46ZZP8LoFTpsLS6QZRafw1twXqd1oJ2S9RF55q/x/e/ceFNV5xnH8e1j2AqiAGhQljVUKo6bGW6pGmwAmgTiAkKbjpTpph+hUmzFpa6qOGR2vBHthtLE6iRe8UDpJE3HiLTIDzYwaKmNIR4qDSjSxgUURLAjIInv6x5rVlUWgLHsOy/OZcVxYZ88P1n327Hve931sEPAyyoC1nWomAtr9H7TfiH1EExcLypAi5zi7Xl4n7dF7PvBMxkfVzg5PsQ4dOtThAfLy8sjMzCQrK6tLRV24F/9qLJZAC7tWHnSuJpw4cxzPLf6R5kUdcEzd8+9a0+auUJs+aGdY4B7b52B+rm0uRYGBWag1rzou9KqtoPgDfo4LgIZBwFUU09MQuhO1bsO9NwHAMNyx2rSdou5gZMzkRj680ExL01X+WxNMRWUSY2KW3GsKHoVqeQFshY5GHMaJKL2lr2dgGtT/nraznswQMNsjF0+F93T7s3NBQQHp6ens3buXiAidjyP2Is/9dBrPvjKVxrpGjGYjJouJc+fOaR3LO+x1j7hTBfvD+7zfpxiGw+CTYPunoxGGIQzMsW3O8BXzMyiPHUdtrQbUTs1YUev/AI0H8aMJsxnCwusIC98LrXbAsX2CopjA/Gwnfkh9UQLno7YUw508wAbYHS0A/aNQ+q/SOp7oom4X9lWrVmE0Glm2bJnze1lZWYSGhnb3ofs8RVEICu5cL8/eRFVVviwo4cSefG7XNjDpxaeI/3nM/Z/VPONel3s30wfVu2B6dF9RRfED8zTHnw509oxavXsVGve7ydQEDXtRA17x2CIkLSiKH0rIH1Fb/o165wSoLSjmGDBNka2Ae6FuF/bCwkJP5BB9hKqqvLNwG2cOFzn3avnXZ6Vkb/qIbWc2MTwyHCVwjmPFpmrDdVqiBcwxjrNyb+duOsb97kYPszuaovRb7M1IPUIxjkUxarvCWXSf7BUjvOqzD864FHWA5sZm6mtus3FuJuBoD6gM+tv9xt5Kf8AEAbNQQjwzp7rL1AZob9teWlA73JteCO+RLQWEV3289ajbRuOqXeXahW+pKLcybNRQFP9IlMeOOpa422vAfySKn3bDe4p5KmpTtvvmIkpgBxddhfAuOWMXXlVjvdXuff4mf2qrXFdoKv7fRzFN0rSoA2Cafm+R0cNzrY1geAJMHY/nC+EtUtiFV/1g4sh2L8a1NLcQEfWIbQs0pCh+KAOz7814MYHSz/G3OQZl4AG5wCh0RYZihFfNXZlK0fHiNpucmSxGfvyTqdrtXNkJil8wSugOVHsNtFrBMBTFzzOrMYXwJDlj7wPqa29TWniRyitVWkchevIofrt7KZYgM4H9LViCzJgsRiY+P45fv9c79uJW/AaiGMdIURe6JWfsPsx2x8a2X+2iIOcURrORFttdnhgTweqcNxkeqd2QR+zc6UxLnkzRiS9pqm9izLQoIqKGaZZHCF8jhd2Hpf9sG2dPFGO70+JsFXe5+ArLnlnNvot/pl+IdoufLIFmfvzyFM2OL4Qvk6EYH1VRbuXs8S+wPTSWrdpVmhub+TSrQKNkQoieJoXdR5V+fhGDv/sdBZsbbRQdL/ZyIiGEt0hh91EB/Swofu1PwdNyGEYI0bOksPuoyfFPYbe732rfEmQmIU3akAnhq6Sw+yhzgJnfvPdLzAEml8UzliAzTydMYNILnus+L4TQF5kV48Ni505n2Kgh/HXzx1wuvkJIWDCpy2YRN3+GrJQUwodJYfdx0U9Hsu7Q77SOIYTwIinswqOuf3OD43vy+faSlZHjniD+F7GEhgVrHUuIPkUKu/CYLz8tZc2mP6G22mmx3eV07lmyN/6d9YdXMCHuh1rHE6LPkIunwiOqK2r4aMMxbE02WmyOhhS2Jht3GppZm7qFO41u2twJIXpEtwv7jh07SEpKIiUlhdmzZ3Ps2DFP5BK9zMmsf6Cq7qdXosLpQ2e9G0iIPqzbQzELFixgyZIlAFRVVfHSSy8xffp0goNlXLUvqbxSxV2b+56gtjs2bvznppcTCdF3dfuMvX///s7bjY2NKIqC3W7v7sOKXiZy/AiMloe7CzmYAkx8b7T3G1AL0Vd5ZIw9JyeHhIQEUlNT2bBhA6GhGrcxE173/IJn8TO0nRuvKBDQL4ApsyZqkEqIvklR2x0YdUhNTaWiosLtfWfOnMFguL/RVFlZGcuXL2f//v2dLu7Nzc2UlJR0IbLQq2/Of8veNz/EftfO3ZZWDEYDliATi/4yj8dGDNI6nhA+6cknn8RsNrt8r8Mx9kOHDnX6ANHR0YSFhXH27Fni4+O7Hc7bzp07x6RJkzTN8Ch6zwfw0fU9FB75ghvfVBMRPYxJL45zefPXmt5/h3rPB/rPqPd84JmMjzop7vbF0/LyckaNGgXAtWvXuHDhApGRkd19WNFLGU1GaaAhhMa6Xdi3bdvG5cuX8ff3x2Aw8PbbbzsLvRBCCO/rdmHfunWrJ3IIIYTwEFl5KoQQPkbzvWK+m5Rjs9k6+Jfe0dys76Xvkq/79J5R7/lA/xn1ng+6n/G7muluYmOH0x17Wn19PRcvXtQyghBC9FpRUVEuC0VBB4XdbrfT0NCA0WiU5g9CCNFJqqrS0tJCUFAQfn6uo+qaF3YhhBCeJRdPhRDCx0hhF0IIHyOFXQghfIwUdiGE8DFS2IUQwsdIYRdCCB8jhV0IIXyMFPaH6L0597p160hISCA5OZm5c+dy/vx5rSO5OHz4MElJSYwZM4aDBw9qHcfpypUrzJkzh/j4eObMmcPVq1e1juQiIyODuLg4oqOjdbkSu7a2lkWLFhEfH09SUhKvv/46NTU1WsdqY+nSpSQnJ5OSksL8+fO5cOGC1pHcevfdd3v2uVaFi7q6Oudtq9WqTpgwQb1165aGiVzl5+erNpvNeXvmzJkaJ3JVVlamXrp0SX3rrbfUAwcOaB3HaeHChWpubq6qqqqam5urLly4UONEroqKitSKigo1NjZWLSsr0zpOG7W1tWphYaHz63feeUddtWqVhonce/D1m5eXp6akpGiYxr2SkhI1LS1NjYmJ6bHnWs7YH6L35tyxsbEYjY6m0ePHj8dqteoqX1RUFJGRkW2WOGvp5s2blJaWkpiYCEBiYiKlpaW6OuOcPHky4eHhWsdoV0hICFOm3G+gMn78+HZbZmrpwdfv7du3dbdNic1mY/369axdu7ZHs2m+u6Me5eTksG/fPqxWK5s3b9Ztc+7s7GxiYmJ0VUT1qLKykiFDhjhb9BkMBsLCwqisrGTgwIEap+t97HY7OTk5xMXFaR3FrdWrV3P69GlUVWXXrl1ax3GxdetWkpOTefzxx3v0OH2usHemOfe8efOYN2+eszn3tGnTvFbcO9s8/OjRo3zyySdkZ2d7Jdd3utLcXPimDRs2EBgYyIIFC7SO4tamTZsAyM3NZcuWLbz//vsaJ3IoLi7m/PnzLF++vMeP1ecKu7eac/+/OpMvLy+PzMxMsrKyGDx4sBdS3deV359ehIeHU1VVRWtrKwaDgdbWVq5fv67roQ+9ysjI4Ouvv2bnzp26/6SYkpLCmjVrqK2t1cWn7qKiIr766itmzpwJgNVqJS0tjfT0dGbMmOHRY+n7mdFAeXm587Yem3MXFBSQnp7O7t27iYiI0DpOrzBo0CBGjx7NkSNHADhy5AijR4+WYZguyszMpKSkhO3bt2MymbSO00ZDQwOVlZXOr/Pz8wkODiYkJES7UA9YvHgxp06dIj8/n/z8fIYOHcru3bs9XtRBtu1t44033nBpzv3aa68xa9YsrWM5TZ06FaPR6FKUsrKydHFGAo6iuWXLFurq6jAajQQEBLBnzx7N3xzLy8tZuXIldXV1DBgwgIyMDEaOHKlppgdt3LiRkydPUl1dTWhoKCEhIRw9elTrWE6XLl0iMTGRESNGYLFYAIiIiGD79u0aJ7uvurqapUuX0tTUhJ+fH8HBwaxYsYKxY8dqHc2tuLg4du7cSVRUlMcfWwq7EEL4GBmKEUIIHyOFXQghfIwUdiGE8DFS2IUQwsdIYRdCCB8jhV0IIXyMFHYhhPAxUtiFEMLH/A+6WMas5NrNKgAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"plt.scatter(X_pca[:, 0], X_pca[:, 1], c=y_test, s=50, cmap='viridis')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "markdown",
|
||
"metadata": {},
|
||
"source": [
|
||
"### Irysy"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 14,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"(105, 4) (105,)\n",
|
||
"(45, 4) (45,)\n",
|
||
"9.333333333333333e-01\n"
|
||
]
|
||
},
|
||
{
|
||
"name": "stderr",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"/home/andrzej/anaconda3/lib/python3.9/site-packages/numpy/core/fromnumeric.py:3438: FutureWarning: In a future version, DataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'frame.mean(axis=0)' or just 'frame.mean()'\n",
|
||
" return mean(axis=axis, dtype=dtype, out=out, **kwargs)\n"
|
||
]
|
||
}
|
||
],
|
||
"source": [
|
||
"# Preprocessing danych\n",
|
||
"\n",
|
||
"\n",
|
||
"# Wczytywanie danych\n",
|
||
"df = pd.read_csv(\"iris.csv\")\n",
|
||
"\n",
|
||
"# Zrandomizowanie kolejności danych w datasecie\n",
|
||
"df = df.sample(frac=1, random_state=10).reset_index(drop=True)\n",
|
||
"\n",
|
||
"# Podział na atrybuty i przewidywane wartości\n",
|
||
"X, y = df.iloc[:, :-1], df.iloc[:, -1]\n",
|
||
"\n",
|
||
"# Normalizacja i skalowanie danych\n",
|
||
"from sklearn.preprocessing import StandardScaler\n",
|
||
"sc = StandardScaler()\n",
|
||
"X = sc.fit_transform(X.to_numpy())\n",
|
||
"X = pd.DataFrame(X, columns=df.columns.values.tolist()[:-1])\n",
|
||
"\n",
|
||
"# Podział na dane trenujące i testowe, z uwzględnieniem równego rozłożenia danych\n",
|
||
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=1)\n",
|
||
"\n",
|
||
"print(X_train.shape, y_train.shape)\n",
|
||
"print(X_test.shape, y_test.shape)\n",
|
||
"\n",
|
||
"\n",
|
||
"# Trenowanie modelu klasyfikatora\n",
|
||
"x = NaiveBayesClassifier()\n",
|
||
"x.fit(X_train, y_train)\n",
|
||
"\n",
|
||
"\n",
|
||
"# Predykcja wartości dla danych testowych\n",
|
||
"predictions = x.predict(X_test)\n",
|
||
"\n",
|
||
"# Prawdopodobieństwa kolejnych predykcji\n",
|
||
"probabilities = [p[1] for p in predictions]\n",
|
||
"\n",
|
||
"# Przewidziana wartość\n",
|
||
"predictions = [p[0] for p in predictions]\n",
|
||
"\n",
|
||
"\n",
|
||
"# Wyliczenie accuracy modelu\n",
|
||
"print(x.accuracy(y_test, predictions))"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"0.9326599326599326"
|
||
]
|
||
},
|
||
"execution_count": 15,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
}
|
||
],
|
||
"source": [
|
||
"f1_score(y_test, predictions, average=\"macro\")"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
" sepal.length sepal.width petal.length petal.width\n",
|
||
"106 -0.900681 0.558611 -1.169714 -0.920548\n",
|
||
"65 -1.143017 1.249201 -1.340227 -1.447076\n",
|
||
"49 1.038005 0.558611 1.103783 1.712096\n",
|
||
"74 2.128516 -0.131979 1.615320 1.185567\n",
|
||
"110 -0.173674 1.709595 -1.169714 -1.183812\n",
|
||
".. ... ... ... ...\n",
|
||
"123 -1.021849 -0.131979 -1.226552 -1.315444\n",
|
||
"121 -0.052506 -1.052767 0.137547 0.000878\n",
|
||
"85 -0.537178 1.939791 -1.169714 -1.052180\n",
|
||
"13 -1.143017 -0.131979 -1.340227 -1.315444\n",
|
||
"125 -1.870024 -0.131979 -1.510739 -1.447076\n",
|
||
"\n",
|
||
"[105 rows x 4 columns]\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"text/plain": [
|
||
"<matplotlib.collections.PathCollection at 0x7f716bd1e820>"
|
||
]
|
||
},
|
||
"execution_count": 18,
|
||
"metadata": {},
|
||
"output_type": "execute_result"
|
||
},
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAD7CAYAAAB+B7/XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAs20lEQVR4nO3dd3hUVf7H8feZOzUF0ghE6T0YVgQVFRcFVFwBBV1F+Yltde11V9eKi2LBdXXdFcWKu4KuawMBBVFsFBWjohGkKEUl9EDKTKbd8/sjgJRJCGRmbubm+3oeH2Hu5NzPDck3J+eee47SWmuEEELYhsPqAEIIIeJLCrsQQtiMFHYhhLAZKexCCGEzUtiFEMJmnFYHME2TqqoqXC4XSimr4wghRErQWhMOh0lPT8fh2LOPbnlhr6qqYvny5VbHEEKIlNS1a1cyMzP3eM3ywu5yuYCacG632+I0B6akpISioiKrY8SN3a4H5JpSgd2uB5JzTaFQiOXLl++qobuzvLDvHH5xu914PB6L0xy4VMxcF7tdD8g1pQK7XQ8k75piDWHLzVMhhLAZKexCCGEzlg/FCCHEwShdtYGfl5fSonUu7Q9rY3WcRkUKuxAipZRvqeDecx5hycJluDwuIuEIh3Yu4O7X/8whnVpZHa9RkKEYIUTK0Frzl1PupWTeUkLVYaq2+wn6Q6wqWcsNx99JMBC0OmKjIIVdCJEyvpv/PT8vX0ckHN3jdW1qAlVBPnxlgUXJGhcp7EKIlPH95yuJhCMxj1VXVrP4w++SnKhxksIuhEgZGVnpOF2xbw0aTgdZ+c2SnKhxksIuhEgZ/UYcjWnG3vTNcDk55cIBSU7UOElhF0KkjMzsDK5/8jI8PjcOx69PXHrTPJx14xCZ9riDTHcUQqSUUy44kQ5FbXn179NZ9e0aWrXP58wbhnDEwJ5WR2s0pLALIVJOl94duX3K9VbHaLRkKEYIIWxGCrsQQtiMFHYhhLAZKexCCGEzUtiFEMJmpLALIYTNSGEXQgibkcIuhBA2I4VdCCFsRgq7EELYjBR2IYSwGSnsQghhM3FZBKysrIxbbrmFtWvX4na7adeuHffccw85OTnxaD4mbVZB6BPQfnAdiXK2Tdi5hBAilcSlx66U4tJLL2X27NlMnz6dNm3a8PDDD8ej6ZhM/+vojceit9+GLh+L3jwEs+xatA4l7JxCCJEq4lLYs7Ky6Nu3766/9+rVi3Xr1sWj6X3o0CIoHwtUg64CHQCCEPwIXX5vQs4phBCpJO5j7KZp8vLLLzNw4MB4Nw2ArpwIVMc4Ug2BqWizMiHnFUKIVKG01rE3EDxIY8eOZcOGDTz++OM4HPv/uREMBikpKal3+0WtrsBlbI95LGr6WLF5DIFw+3q3J4QQqayoqAiPx7PHa3HdQWn8+PGsWbOGiRMn1quo7y9cLObmVhCJXdgNR5TCw45HGS0P6NwHq7i4mD59+iTlXMlgt+sBuaZUYLfrgeRcU12d4rgNxTz66KOUlJQwYcIE3G53vJrdh0q7CPDFOOIAV8+kFXUhhGis4tJjX7FiBRMnTqR9+/ace+65ALRu3ZoJEybEo/k9+YZDcC6E5tdMdax5ERzpqKzEzcQRQohUEZfC3qVLF5YtWxaPpvZLKQOyHofQfHTgdTArwXMCyjcc5chISgYhhGjM4jrGnixKKfAcj/Icb3UUIYRodGRJASGEsBkp7EIIYTNS2IUQwmZScoz9YOnwN+jqOaCjKO+AmsXDlLI6lhBCxFWTKOxaR9DbrofgPCAImOjAS+DsCTnPotT+H4wSQohU0SSGYnTVJAh+AgQAc8eLfgh/ja54xMpoQggRd02isON/gdgLhwUh8ApaR5McSAghEqdpFHZzS+3HdLhm+V8hhLCJplHYHS1qP6bcoNKTl0UIIRKsaRT29EuJvXCYF3z/V7NMgRBC2ESTKOwqbTR4TwW8gEHNZfvAcywq8zprwwkhRJw1iemOSjlQWePRkcug+n3ABE9/lOswq6MJIUTcNYnCvpNydoaMzlbHEEKIhGoSQzFCCNGUSGEXQgibkcIuhBA2I4VdCCFsRgq7EELYjBR2IYSwGSnsQghhM1LYhRDCZqSwCyGEzUhhF0IIm5HCLoQQNiOFXQghbEYKuxBC2IwUdiGEsBkp7EIIYTNS2IUQwmaksAshhM1IYRdCCJuRwi6EEDYjhV0IIWxGCrsQQtiMFHYhhLAZKexCCGEzcSvs48ePZ+DAgXTr1o3ly5fHq1khhBAHKG6FfdCgQUyZMoVDDz00Xk0KIYQ4CM54NXTkkUfGqykhhAV+XlHKS/e9zqJZX+NyOzlpdH9+/6dhNMvJtDqaOEBxK+xCiNS18qtV3HTCGIKBEGbUBOC1R6bz/pRPeLL4IZrlHlhxX/n1Kl59eDorv15Ffts8zrx+CEcN7pWA5CIWpbXW8Wxw4MCBTJw4ka5du9br/cFgkJKSknhGqAdNmutHPM51hKM5VIYKkfvIoin71wUv8MvS9fu8brgMjjunN0NuGFTvtr6a9R1v3PcOkVAUbdaUF7fPxdEjejH0xvq3I+qnqKgIj8ezx2uNpsceK1wi6Oh6dNmlEPkJlAIUqAxU9tMoV+EBtVVcXEyfPn0SE9QCdrsekGuqj7KN29n44+aYx6LhKN/OWc6YF2+pV1v+igB393+EcHVkj9dDgTCLpi5m1E2/p0vvjnsck3+jg1NXp7hJdVPNyAb0lnMh8gMQAO0HXQXmBvTW0Wiz0uqIQiRdKBDCYdReCkLV4Xq3tfCtL2ptKxyMMPuFDw44nzhwcSvs48aNo3///qxfv56LL76YIUOGxKvpBtPRUswt58PmAWCuA6Ix3hRGB6YlPZsQVmvRJpe0TF/MY0rBb/rX/zfZym1VRCMxvr8AM2qybWP5QWUUByZuhf3OO+/k448/ZsmSJcyfP5+ZM2fGq+kG0aYfveVsCBcDkTreGYDw4mTFEqLRcDgcXHL/KDxp+w6Fun1uLhw7st5tde/bBeWIXVa86R6cboN/XPEUU8a9xsa1mw46s6hboxljTxQdeAvMCmL20vfgBKNVMiIJ0eicevFAzKjJc7dNIVQdQZsmeYfmcOMzV9D5iA71bqfbkZ3o+Jt2rPjyRyKhXztSyqGo9geZ9+bnBKuCuDxOXrr/Da567GJa9c5JxCU1abYv7IQ+BAL1eKOB8v0+wWGEaLxOu/QkBl80gJ9XlOL2umjVPh+lVL0/PhqNEglFuP/t27n/vH+w+KPvcHlcRMI1r0cjUYJVQaBmvB1gwvWTuObfF4K97p1azv6FXaXX401eyPwTytk24XGEaMwMp0G7wtYH9DFb15cx8aZ/88kbn2FGTfLb5nHJfaO44ak/8tOydWz6eQsTrn+eaOW+vzWHq8Ms+F8xp509OF6XIGgCs2KU70wg9o2hGgZkXI4j/cJkRRLCNirKKrnqqFv5+LWFREIRzKjJ+lUb+fulT/LpjGL6nHw4Doejzpk1Kz9flcTETYPtCzvu48DTr443RCHwVtLiCGEn0ye+S8XWSqIRc4/Xg/4gz946hVB1iJbtWmDudXx3FZurEh2zybF9YVdKQead1DnqFF2XtDxC2MmHr8wnFAjFPKYciu8/X0mbwkOhjqH6SHh/ExvEgbL/GDugjFw0BrVOdzTykppHNA0bKiuZ8u3XfLm+lFbpGZz/m170alVgday42t/NVaUUzXMz8aZ7qa6sjvme7FbNExGtSbN9jx1AKQ/4hgHuGEd9kHZJsiMJm1u07mcGvfg8z3z5BQt+WsvUZUsZ9cb/eHjBPKujxdWgUb/F7Yv1fVWj29GdMZwGw6/9HZ60fd/nTfcw4JJjExmxSWoShR1AZd4Bzm6g0na84gDlA8+JqLRRlmYT9hIxTa6Y8Rb+cJhgtGaYwdSa6kiESV8Xs3h9qcUJ42fIH08iq0UzDJexx+ueNDdX/P1C3B4XABeNHckxQ4/E7XPj9rp2/X/o5afQZ2hPK6LbWpMYigFQjnTIfRVCC9DVH4Byo3y/Q7l+Y3U0YTMLf1pLOBp73DgYjTL5m6853CZDMunN05mw6EGeu20K7780j3B1mJYd8jl++NG0LWyN1hqlFIbT4M7/3sja73+h+N3FGE6DY4b1Ib9NHsXFxVZfhu00mcIOoJQDPMejPMdbHUXY2Ga/H5PYq2GbWlNaaa/F5lZ8uYoVxasIB8OgYNPazcx8eg5vP/MeWfnNuG/m7bTpVrOzWtvuh9K2u+yylmhNZihGiGTp3qIFtW1z4DEMehfYo7cO8NH/FjD2zL/xw+LVoAFds9hXdVWQQGU161dt5Kb+YwgGglZHbVKksO9Fa42OrEVH1qB17XNvhahNYV4Luue1wBVjMSzD4eD/evZKfqgEiEaj/Oua5wjWMt0RQGuoDoT4+LVPk5hMSGHfjQ5+jN40AL15KHrz6ehN/TEDs6yOJVLQs8NG0DO/JT6nk3SXi3SXm2yvl0lnnEnLjAyr48XF6pKfCFXXXtR3qq6sZtmilUlIJHayxRi71iF01fPgnwLmNnB2QGVcjfLWf/0JHVqELrsG2G2urRmA7beglQflHRD33MK+sn0+XjtnFEs3b+L7TZvITUvjuDZtcdaypG0q0lrX+eDRTi6Pk5yC7MQHErukfGHXOore+ocda6nvKMqR79Hbb0FH1uDI+GP92qn4G3sU9V2q0RXjpbCLg1KY14LCvBZWx0iIDkVt69x5aSelFCed3z8JicROqd99CH4M4W/ZpyjrAFT+E21uq1874W9qPxZdgzb9B5tQCFsynAa5reruiXt8bq78x8Xkt5Gnu5Mp9Xvs1dOA2oquq6bw+06vR0tOoI7xQpXynyoh4qp8SwWlP26o9bg3w8s/54+jQ892SUwlwA49dl3HNCplgq5rO7zdeAcT+9OhwH0cStX+2LQQTVHltqp9njjdnWE4pKhbJOULu/KestsyAXvRUfAcU792Mv8Mqjl7/hJjgMpANbuzwTmFsJsWbXLrXASs0+HtkxdG7CHlCzve08CRxz6jSsoHvqEo45B6NaOMAlTedPCdV9OeIxd8v0flvYVy1n/PRyGaCpfbxVk3DYu5CbYnzc0Ffz3HglQCbDDGrpQHcv+H3v5XCM6lZnEvJ6RdiMq45sDaMvJRze8C7kpEVCFsZ/SY31NZVsnbz7yH0+1Em5poJMoZ1/yOouO7Wx2vyUr9HjugHDk4sv+Jyv8c1WIOKv8zHJnXo1Tt43/1pc0KzIpHMTf+FnPDUZhlV6PDS+OQWojU53A4uPqxS3h+6WMc2qWAcDCM4TKY8eS7nFNwGV/N/dbqiE2SLQr7TsqRhjJaopQrLu1psxK95Uyoeg7MDaC3Q/A99JZz0cHP4nIOYW9aazb+tJmt68usjpJQT9wwidUlPxEJRwlUVOOvCFC+pYIxp49n3Q/rrY7X5NiqsMeb9v8HouvZcxqkBgLo8tt3/FmI2D56dSGj2l3Jxd2v5/wOV3HZb27iuwXLrI4VdxvXbmLR7K9rVnfcSyQc4fV/zLQgVdMmhb0ugTeAWqZTRjfhcUpPRMT2yeuf8reLH2fzz1sIBUKEgxFWl/zEX065l5Vfr0pajvItFXz29pcs/ug7IuF6Tv09QD9+sxaXO/btukg4yhIb/jBr7FL+5mlC1TlH3sBR1wNNosnSWjPxz/8m6N/36yMUCPLCmFcY99atCc0QjUZ54oZJvPPsXFyemm9zh+Hg5uev5rgzjorruZrlZaLN2n97lT1Nk0967HXx/Bao7Qasg+qIbBgg9lW2YRtl67fHPKY1fD23JOEZnr/jZWZP+pBwMIy/PIC/PEBlWRX3j/oHy774Ia7nKuzbhYzs9JjHvOkezrjq1LieT+yfFPY6qPQrQO07Rxd8kHEtWn7hETE43c5aN9oAcNbxtGY8VPuDvDVhFkH/vr9xhqpDTBn3WlzPp5Ti7tf+jC/Ti8vz68QFb7qHE84+lqNP6x3X84n9k8pUB+VsCzkvobffBpEfQRmACzKuQ6WdD3xpdUTRCDXLyaTT4e1jrkFuOA1OOOe4hJ5/3cr1ta66qDUs/XRF3M/Z7ajOTPr+n0x/YhZff/gdWfnNGXbFKfQ+6Td1Pp0qEkMK+34oVw9U3jR0dEPNipFGa5QsCCb24/onL+OmE+4mGAjuGn82nAaZORmMvvvshJ47IzudSKj2G6W1DZs0VG5BNhfde15C2hYHRoZi6kkZLVHO9lLURb106d2Rxz9/gN+edQzpzdNolpvJkD+exMSv/kbeITkJPXd+mzzaH9aGWB1lT5qb06+q/wY0IjVJldqLjm5E+1+ByBIw2qHSRspaMeKgtCtszV2v3GTJuW/5z7Xc0O9OgoHQrvnl3nQPnY/owNDLT7Ykk0geKey70cEF6G1X1qwKSQhwov1T0M3uxJE20up4QtRbu8LWPL/0H0x7Yjafv/0lvgwvp116EieccyxOl3zb2538C++gdTV629U14+i7RGr+Kx+Hdh+HcraxKp4QByy7ZRYXjR3JRWOlU9LUyBj7TtXv1XHQRAfiO0VMCCESJW6FfdWqVYwcOZLBgwczcuRIVq9eHa+mk8PcBLq2J0nDEF2X1DhCCHGw4lbY7777bkaNGsXs2bMZNWoUY8aMiVfTcaF1FLNqCuamQZgbDsfcPAQdmPHrgyTOLlDr9nc+cB2WtKxCCNEQcSnsW7ZsYcmSJQwdOhSAoUOHsmTJErZu3RqP5htMa43edhNUPATRn2rG0SMr0OV3oCv+XvMm93HgyCbmp0QZKN+IpGYWQtjX0s9WcM/Zf+fSohsZc8Z4vvl4SVzbj0thLy0tpWXLlhhGzaPShmGQn59PaWlpPJpvuPBiCH4IBPZ8XQfA/290tBSlHKjs/4DRZsceql5Q6aCyUdmTUA5ZyEgI0XBvPTmbmwf9lXlvfMaaJT+zcPoX3H7afbz8wBtxO0ejmRVTUpK4hZEObf5vWqRXx3xgwzRNflkxic1VOx/aeIAM91I8znWEzRzKqw+HnyNAccy2i4tjv56q7HY9INeUCux2PRD7miq2VPHkjZOIhKJ7vB70h/jPPa+S26MZua2zG3zuuBT2goICNmzYQDQaxTAMotEoGzdupKCgoN5tFBUV4fHEWnCr4czt0yAQe1EmhwPatmlJu/Q+u716ZL3aLS4upk+fPvt/Y4qw2/WAXFMqsNv1QO3XNPXxd3AYBhDd94NMzYZvyjjljJPqdY5gMFhrhzguQzG5ubkUFhYyY8YMAGbMmEFhYSE5OYl9dLq+lOfEHcMrsRjg7pfMOEKIJqqyrIpw9b47TUHNpiTbN1XE5TxxmxXz17/+lcmTJzN48GAmT57M2LFj49V0w3lOqBk7j/ULiiMDjNZJjyREvAXCYTZWVRIxTaujiFoUHtMFb3rskQlfppeex3ePy3niNsbeqVMnXn311Xg1F1dKGejsybB5EOjyPQ+a29FbL4Dc12V5UZGSNvv9jPngPeau/hGFwm0YXNb7SK46qi8O+ZpuVI4Y1JMWbXL5ZeV6ouFfh2MchoPM7Az6jTg6LudpMk+eqsi31CwRsLcwRH+E0OfJjiREgwXCYc783xTeW/UDoWiUYDRCRSjIk198xt0fvm91PLEXh8PBwx+MpccxXXH73KQ3T8Pjc9P5iA48+sm9cVvHp9HMikk0HVwI2l/LwQA69BnK0ze5oYRooLeWf88Wv3+f4ZdAJMKrS0q49uhjyE/PsCidiCU7vzmPfHQP635Yz7ofNtCyXR5tusV3m80mU9hrbp7WcjcaJ0r5khxIiIabtXI5gUjsTTVcDgcLf/6JM7oVJjmVqI9DOrXikE6tEtJ20xmK8f2O2n+OOcArG+6K1OMy6to/VeFyNJlvcbGbJvOvrpwdIW0U7NMz90HahbIkr0hJI7r3IM3linksYpoc37Z9ws69bdN23nhsJhP//B/mvPgRwcC+m2cLazSdoRhAZd4K7iPQlU/XrNbobI1K/yPKe4rV0UQjobVmayCA2zDITNADc/F0csfOdM9rwXcbNxCM/jrM6HM6ufGYfjRL0DV8/NpCxl/4OGhNqDqML8PLxJte4OG5f6VDz3YJOaeov6ZV2JUC76koGXYRMUxf/j0PzvuYLQE/ptb0bnUI4waeROec3Hq3ETFNvtu0EdM06dEiH48zsd9iToeDKSPO5qniRUz5djHlwWo6ZOdwQ99jOaVTl4Scc8OaTTx04eOEAr8ucx2orCZQCbeeeh8vrX1y17pRwhpNqrADaB2B0HyIbgZXN5SryOpIohF4Y+l33PnBe1TvdiNy0bqfOfN/L/H2qAto3Wz/i8DNXL6Muz58j3DU3LUu0c3HHs/ow49IVGwAPE4n1/U9luv6HpvQ8+w046l3iUZjPwQVqKzmyznfcNSpib1mUbcmVdh1qBhddhU1+5lqQKONDqjsZ1FGnsXphFWipsn9n3y0R1GHmq+QQDjMk198zn0D694A+pO1q7n5vVn7tPHA/I/J8HgY0b1HvGNbZu3SX4iEYs/EMSNR1q/amOREYm9N5uapjm5Cl/0BdBnoqpo57ToAkeXosj/8uuGGaHJ+LCujOhq7UEW15r0ff9hvGw8vmLdPUQeojkR4eME8W319tT+sDS5P7D6hw2lQkKApfKL+mk5hD7wCOtYc9ghEVkPk22RHEo2E03DUWXid9ZgyuGRT7b3UTf4qKkL2mTEy5PKTcRj7fk6UgvTmPnqf1NOCVGJ3TaawE1oM1PHNFV6etCiicWnfPIscX+zVP10Og+Hd9/+Aj3c/N0k9hn1GPfPb5HHb5Ovx+Nx40mq2k/RlemneohkPzroTh8ydt5x9vtr2xyig5udYjJs+ygGO+s98EPailOL+QSdz+YxpewynOB0Ocnxe/nDE/tcKP6NbIa8uKSG816P9hlL0b9s+4bNjkq3f8KN5+een+PC/89m8rowORW3oN+JoXO7Yc+pFctnrq60OKu1cdGAqUB3jqBM8xyc5kWhMftu2PVNGnM3DC+fxZek63IbB6d0Kub7vcbX25nd307H9+HDNKrb4/bvmk7sNg3SXm7EnDkp0fEtkZmcw7MrB+3+jSDpbFXatTbT/VfA/A9GNYLSC9MtQvt+jXD3QGVdC5ZPUzIoxATcoJyr7CZSSnkZTd0TBIUw585yD+tgcXxrTRp7P5G++ZuaKZUS15rTOXbmwV2/y0vb/g0GIeLJXYS+/HQLvsGvT6uhqqBiHDn+Dan4vjowr0Z4T0P6XIfoLuHqh0s5FGflWxhYp7qft27nn4w/4aPUqNJq2zbO4tV9/Tu7U2epooomyTWHX4WUQeJt9hlp0AAJT0ekXoZydUK4eqOb3WpJR2M+GykrOeGUy5cEg5o6ZNau2lXH97Jk8MOgUWVlRWMI2t6919Wwg9l6CEIHqOcmMI5qIp79cRFUotKuo71QdiXDvxx8QtXibOq01oerQPtM5I+EIrz86ndGdruaMrAu4vt8dLJr9tTUhRdzZprDXjJvHmqcOYKJ1bUVfiIM3+4cV+8yE2ak6EmHF1i1JTlTDXxHgX9c+y7DM0QzLOJ9zW1/OW0/MQmtNNBrl9iH3M+mu/7J+1Ub85QGWLFzO2LMe5q0nZlmSV8SXbYZilKc/2j859i5JyouSWS8iARR17ylqxZ6jkXCEG/vfxU/f/0I4WDN9c2tpGU/fMpn1qzfR87eFLP10BUF/aI+PC/qDPH3zi5w0+gTSMmXjmVRmnx676yhwdgP2XqbUA86e4OplQShhd0O6dMPtiL2SYbrLfUArQ8bLvDc+Y90PG3YV9Z2C/iBTH3+HmU/Poboy1rTfmiUBFs36OgkpRSLZprArpVDZk8B3BjXF3Vvzn+9MVM6zNUv2ChFnl/Y+kkyPB2Ovry+v08nYEwda0mP/8JUFtRZup9Ng4091DA/tGJMXqc02hR1AOdJwNB+HarkI1eJdVMtFOJqPRSmv1dGETeWlpTHjvNEM69odt2GggKL8ljw9dDindu5qSab9/Szp2rsj3vTYG3BEI1EOP/GwBKQSyWSbMfbdKeWteThJiCRomZHBI4NP45HBp6G1tvy3wxPPPZ4v5nwTs9ceiUT5vzFnUfzeYsLBMNHIrzd+PWluTjjnOPLbyBLWqc5WPXYhrJaoom6aJuFQ/WZ29Rt+FK27FODy7Pk0tSfNw1nXD6GgfUse/+xBep98OC6PE2+GF2+Gl+HX/I6bnr4iEfFFktmyxy6EXWzbtJ1nbpnMB/+dTyQcoVX7fE645Gj69Kl9YTKny8kjH43lhbte4e1n3yforyavdS7/d+dZnHbpSQDkFmRz/8zbqSirpGJrJXmH5uD2upN1WSLBpLAL0Uj5KwJcffStbFlXRjRc84xG6Y8beH3cO2Sn53Dm9UNr/Vhfho8rH72IKx65EDNqYjhjz9zJzM4gMzsjIfmFdWQoRohG6p3n3mf7pvJdRX2ncHWESXf+l2r//jfvUErVWtSFfUlhF6KR+uDl+fs8RLSTw3Dw3fzvk5xIpAop7EKkKKtn34jGSwq7EI3UwFHH79p6bm9mVHNYv25JTiRShRR20WRVBIP4w413cbhTLxlIdn4WTteeY+Qur5M/3H8eHl/sh4yEkFkxwvbWVZTz35JvWb2tjG65ebTPzuZfny3kx21lABzeshV3nzCQovyWFifdU1qmj8c/f4Bnb53M+1PmEQmFKejUihMv6cvwa0+zOp5oxKSwC1tbuGkjT3w2D9PUhMxozGV2i0vXMfK1V3hj5Ci65Taupy6b5zXjT89exU3PXLlr2mJxcbHVsUQjJ0MxwrY2+at4fOX3VEcihMyaKYO1r50e5uEF85IZ74DItEVxIKSwC9t6c+mSfXYOqo0G5q1dndA8QiSLFHZhW79UlBOuZ2EHazbFECIRGlzYp02bxrBhw+jRoweTJ0+ORyYh4qIwrwUeR/2+xB1KcVLHzglOJERyNLiwFxYW8uijjzJ0aO3rVghhhWFdu++zAUYsDqVId7n507H9kpAq/ipDISZ8/iknvPAsxzw7kZtmv82PZVutjiUs1OBZMV271mwm4KhnzyhRtLkNImvAyEcZBZZmEY1DutvNmKJejF+2hFA0Qtg0cTkceJxO2mdl882G9RhKMahjJ24+9re0bZ5ldeQDVhkKMfyVyfxSXkEwWrMV3vTl3/PujyuZPOJserWS74WmKOWnO2odQG+/C6png3KBDqNdh6GyHkEZh1gdT1isU0Ymn/7hcj5as4qfy8tpn5XNb9u2w7C4IxIvz39VzC/l5QSjvy4UFtUafzjMzXNmMWf0xRamE1ZRej/TBkaMGMG6detiHluwYAGGUTMF69Zbb6WoqIjzzz//gAIEg0FKSkoO6GN21zH3QTLdS3A4fn2C0NQOImYzlmz4B1rL03nCvq7+4lM2BmPvb+p2OHjkiKNo6fUlOZVIpqKiIjyePevcfnvsb775ZsIC7S5WuP3R4RXoLcuAPR8LdygTtxHiiO6/oNLOjmPKPRUXF9e54UGqsdv1gP2vyfzq81rf5zIMOnXv3ugeutqb3f+NEqWuTnFq/z4arusJPD86+FHSoghhheNat611mqZDKTpkZSc5kWgMGlzYZ8yYQf/+/Zk1axaPPfYY/fv3Z+XKlfHItn8qDVRtT+MpcDRPTg5hubJAgKeKF3HFjGmM/Wguy7ZstjpSUlxz9DF4jH2/B3xOJ9cefSzuGMeE/TX45unQoUOtm+roGQD6jloOelG+EUmNI6yxeMN6Rr/xKhFtUh2JYCjFK999y7VHHcPRjpSfH1Cnzjm5/GfE77llzmxKKyswlAOl4NqjjuEPR9hreEPUX0p/1StHJrrZGCgfBwR2O+ID72BwyRe23UVNk8umv0ll+NedhqJaE41E+NeiTxl72OHY/augT8GhvDf6YtZu304gEqZjdo701Ju4lC7sAI60s9HODujKiRBZDkYLVNrF4B0iO8w0AZ/+8hOBcCTmsXA0yuzSX0jc7fPGQylFu6wsq2OIRiLlCzuAch+JynnW6hjCAhsrq9DEnrEb1ZpNtUwFFMLObFHYY9HR9Wj/ixD8HBzZqLTzwHOi9OJtpktubq0rOLoNg44ZmUlOZK1qf5BPXvuU1d+tpWW7fAac14/M7AyrY4kks2Vh16HF6LILQUeAmrFXHf4MPIOg+d+luNtIUX5LOmbnsGzzJiJ7FXhDKQYXHGpRsuRb+fUqbhk0lkg4SqCyGk+am6dveZG7XrmRvkPsfqdB7C6157HHoLVGb7sOtJ+dRb3mQACCcyH4vmXZRGI8f/qZdMrJJc3lwut0ku5yk+F289TQ4bTweK2OlxSRcIRbTxlHRVkVgcqa4aegP0TQH+Tecx5h6/oyixOKZLJfjz38DejtsY9pP9o/BeU9KbmZREK1SE/n7VEX8NX6UpZu3kSuL40B7TvgcTop3tQ05rN/NvNLQsFQzGNaa2Y9P5dRt5+V5FTCKvYr7HobUMdUL3NLspKIJFJK0bvgEHoXNM2F30p/3EA4GI55LFQdZu3SX5KcSFjJdkMxOLuDDtZ2EFxHJjWOEMlwSKdWuDyumMfcXhfterROciJhJdsVdmW0rLlJSowFxZQLlX5RsiMJkXBHn3YEbq875jHlUAy+eECSEwkr2a6wA6is8eA5EfCAygCVDioHlfU0ytnW6nhCxJ3T5eTB2XeSmZOBL6PmhrEnzYMnzcNd//sTOa1kMbCmxH5j7IBSXlT2v9DRdRD+rmYxMFcfVK0LhgmR+jr36sDLP03k49c+Ze33v5DfOpcB5x1PRla61dFEktmysO+kjENAdlESKWx9ZQVvr1iOPxzmyEMOpe+hdY+Ve3weTh59QpLSicbK1oVdiFQ28YvPeeyzBUDNujdel4sOWdnc3LGLxclEY2fLMXYhUt28tWv41+cLCUajBKNRTMAfDrN8y2YeX/691fFEIyeFXYhGaOIXnxOI7LtqZdg0WbytjE3+KgtSiVQhhV2IRmjVttqXAHA5FD9vr+XpaiGQwi5Eo9S6WbNaj4VNzSGZtR8XQgq7EI3QH/schc+575OkToeDwmbNaZkhS/GK2klhF6IRGtShExcc3guP4cS5Y5npdJeL1s2acV3XQovTicZOpjsK0Uj9pV9/zu5RxLRlS6kIBjm2dVsGdOjI4q++sjqaaOSksIuk0Frz3aaNrN2+jdbNmtMzv6VseFIPHbNzuPGYflbHEClGCrtIuJ/Lt3PpW2/yU3k5hlKYWlOQmclzp4+gbfMsq+MJYTsyxi4SKmKajHztFVaWbSUQCVMZDuGPhFm1rYyRr/2XUDRqdUQhbEcKu0io91f9QHmwGnOv/UhNrakMhZjzw0qLkglhX1LYRUJ9t3EDVeHYO/tUhcN8s3F9khMJYX9S2EVC5fjS8Bixl0t2GwZ5vrQkJxLC/qSwi4Qa0rVbrccUcHo3mZMtRLxJYRcJ1SItnXtOHITX6cTYMb3RUAqv08mYEwbKE5RCJIBMdxQJd/ZhPenZshX/XvwVK7ZuoVN2DhcdfgSFLfKtjiaELUlhF0nRPa8FDww6xeoYB2STv4rXlpSwbPNmOmRnc06PnhRkZlodS4j9ksIuRAyfrF3NFTOmYWpNMBrFbRg8VbyIv598Kr/rUvt9AyEaAxljF2IvVaEQV858i0AkQnDHA1ShaJTqSIQ/vTtLNrkQjZ4UdiH28s7K5bUe02jeXLokiWmEOHBS2IXYy/rKSqpreagqGI3yc7nsXiQaNynsQuylU04OPte+m1wApDlddM9rkeREQhyYBt88HTt2LAsXLsTtdpOWlsYdd9xBz54945FNCEuc1KETXqcLfziM3uuY4VDyUJVo9BrcY+/fvz/Tp0/nrbfe4vLLL+fGG2+MRy4hLOMyDF468xxapKWT7nLhNgzSXS6yPF7+M+JsMtxuqyMKUacG99gHDBiw68+9evVi/fr1mKaJwyGjPCJ1dcnNZf4lf+SjNatZva2MQ5s1Y0D7jrhrWfdGiMYkrvPYp0yZwoknnihFXdiC4XAwsENHq2MIccCU1nrvYcQ9jBgxgnXr1sU8tmDBAowdPZiZM2fyz3/+kylTppCXl1fvAMFgkJKSkgOILIQQYqeioiI8Hs8er+23x/7mm2/ut+E5c+bw6KOP8sILLxxQUd9fuMauuLiYPn36WB0jbux2PSDXlArsdj2QnGuqq1Pc4KGYDz74gAceeIBJkybRunXrhjYnhBCigRpc2G+77TZcLhfXXXfdrtdeeOEFsrOz6/XxO0eCQqFQQ6NYIhgMWh0hrux2PSDXlArsdj2Q+GvaWTNjjabvd4w90SoqKli+vPZHuIUQQtSua9euZO616qjlhd00TaqqqnC5XKgdGzEIIYSom9aacDhMenr6PjMRLS/sQggh4ksmnAshhM1IYRdCCJuRwi6EEDYjhV0IIWxGCrsQQtiMFHYhhLAZKexCCGEzUtgbaOzYsZx66qmcfvrpnHvuuXz77bdWR2qQadOmMWzYMHr06MHkyZOtjnPQVq1axciRIxk8eDAjR45k9erVVkdqkPHjxzNw4EC6detmmye1y8rKuOyyyxg8eDDDhg3jmmuuYevWrVbHapCrrrqK008/neHDhzNq1CiWLl1qTRAtGmTu3Lk6FArt+vOgQYMsTtQwy5Yt0ytWrNA333yzfvHFF62Oc9BGjx6tp06dqrXWeurUqXr06NEWJ2qYRYsW6XXr1ukBAwboZcuWWR0nLsrKyvSnn3666+8PPvigvu222yxM1HDl5eW7/jxnzhw9fPhwS3JIj72BBgwYgGvHxse77yCVqrp27Urnzp1TerOULVu2sGTJEoYOHQrA0KFDWbJkSUr3Bo888kgKCgqsjhFXWVlZ9O3bd9ffe/XqVeveD6li9zVbKisrLVsmJa47KDV1soNU41BaWkrLli13bQJjGAb5+fmUlpaSk5NjcToRi2mavPzyywwcONDqKA12xx13MH/+fLTWPPvss5ZkkMK+Hweyg9T06dOZMmVKMuMdsPpejxDJdO+995KWlsb5559vdZQGu++++wCYOnUqDz30EM8880zSM0hh349k7SCVLPW5nlRXUFDAhg0biEajGIZBNBpl48aNthvKsIvx48ezZs0aJk6caKvfdocPH86YMWMoKyur9/4U8WKfz6JFdu4g9dxzz8kOUo1Ebm4uhYWFzJgxA4AZM2ZQWFgowzCN0KOPPkpJSQkTJkzA7XZbHadBqqqqKC0t3fX3uXPn0rx5c7KyspKeRZbtbaBjjjkGl8u1R9E4kB2kGpsZM2bw0EMPUV5ejsvlwufz8fzzz9O5c2erox2QH374gVtvvZXy8nKaNWvG+PHj6dixo9WxDtq4ceN499132bx5M9nZ2WRlZTFz5kyrYzXIihUrGDp0KO3bt8fr9QLQunVrJkyYYHGyg7N582auuuoqAoEADoeD5s2b85e//IXDDjss6VmksAshhM3IUIwQQtiMFHYhhLAZKexCCGEzUtiFEMJmpLALIYTNSGEXQgibkcIuhBA2I4VdCCFs5v8BE3YMViUw2j4AAAAASUVORK5CYII=\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 1 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"pca = PCA(n_components=2)\n",
|
||
"pca.fit(X_test)\n",
|
||
"X_pca = pca.transform(X_test)\n",
|
||
"\n",
|
||
"df_pred = pd.DataFrame(predictions).replace({'Virginica': 0, 'Versicolor': 1, \"Setosa\": 2}, regex=True)\n",
|
||
"df_pred = np.array(df_pred).reshape(1, -1)\n",
|
||
"plt.scatter(X_pca[:, 0], X_pca[:, 1], c=df_pred[0], s=50, cmap='viridis')"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 19,
|
||
"metadata": {},
|
||
"outputs": [
|
||
{
|
||
"data": {
|
||
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAEUCAYAAABkhkJAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8i0lEQVR4nO3dfVxUdfr4/9fMcCM3KqBAVmglKZQ3ICBphopaUAIq3nUj7Sezcpe1LFbdT2l5s26Yrr+isvtcMj+WCmkm1lreVYrCgsqKmayhIoKKoIByMzO/P/gycTMDMwPCAa/n4+Hj4Zzzfr/PdQ7va645Zw4HlV6v1yOEEEK0M3V7ByCEEEKAFCQhhBAKIQVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJGISGhvLzzz8bXbdgwQJWr159w2Noq+0IcaM1lU/mevrpp0lOTja67uzZs/Tv35/q6mqT/fv3709ubm6LYmhLUpAUKC0tjenTpxMQEMDQoUOZPn06R44cae+wFKGjJZhofx05nz766CMmTpxoVtsZM2awcePGGxzRjWXT3gGI+kpLS3nuued47bXXCA8Pp6qqirS0NOzs7No7NCE6HMmnjkXOkBTm1KlTAIwfPx6NRkOXLl0YMWIEPj4+hjabNm0iPDycoKAgZs6cSV5enmFd//79SUxMZMyYMQQHBxMfH49OpwPg9OnTxMTEEBwcTHBwMC+99BJXrlyxKs5du3YRFRVFYGAg06dP5/jx44Z1oaGhfPzxx0RERBAQEMALL7xARUWFYf2HH37IiBEjGDFiBBs3bmx01nPlyhWeeeYZ/P39mTJlCqdPnwbg8ccfByAqKgp/f3+2b99uVezi5qHEfDpz5gyBgYGGcV5++WWGDRtmWB8XF8fatWuB+mc9Wq2W+Ph4goODGTNmDHv27DH0Wb16NWlpaSxZsgR/f3+WLFliWPfzzz/z4IMPEhQUxOLFi1Hyw3mkICnMnXfeiUajYf78+ezZs4eSkpJ663fu3Mn777/P22+/zf79+wkICOCll16q1+Zf//oXmzdvJjk5mR9++IHNmzcDoNfrefbZZ9m3bx8pKSmcP3+ehIQEi2P8z3/+w//+7/+yZMkSUlNTmTZtGn/84x+prKw0tElJSeGjjz7i+++/55dffiEpKQmAvXv3snbtWj799FP+9a9/cfDgwUbjf/PNN8TGxnLo0CF69+5t+E7p888/B2DLli1kZGTw8MMPWxy7uLkoMZ+8vLxwdnbm2LFjQM0lRUdHR3Jycgyvhw4d2qjfl19+ya5du/jqq6/YvHkzO3bsMKybO3cugYGBLFq0iIyMDBYtWmRYt3v3bjZt2sSWLVtISUlh3759Zh69ticFSWGcnZ1Zv349KpWKhQsXMmzYMJ577jkuXrwIwIYNG3jmmWfo27cvNjY2PPfcc2RnZ9f7VDdr1ixcXFy49dZbiYmJYdu2bQD06dOH+++/Hzs7O9zc3Pif//kfDh06ZHGMX375JdOmTWPw4MFoNBomTpyIra0tmZmZhjYzZszA09MTFxcXRo8eTXZ2NlBTqCZNmsTdd9+Ng4MDsbGxjcYfN24cgwYNwsbGhsjISENfISyl1HwKCgri0KFDXLhwAYCHHnqIgwcPcubMGUpLS+udwdVKSUnhySefpFevXri4uPDss8+ata1Zs2bRrVs3br31VoKDg+tdzVAa+Q5Jgfr27cvrr78OQE5ODn/5y19Yvnw5//jHPzh37hzLly8nPj7e0F6v11NQUMBtt90GQK9evQzrbrvtNgoLCwG4dOkSy5YtIy0tjbKyMvR6Pd26dbM4vnPnzvHVV1+xbt06w7KqqirDdgDc3d0N/3dwcDCsKywsZMCAAYZ1dWOt1bNnT8P/u3TpQnl5ucUxClFLifk0dOhQvv/+ezw9PQkKCiI4OJgtW7Zgb29PYGAganXjc4XCwsJ6sdx6661mbathLpaVlZnVrz1IQVK4vn37MmnSJL744gugJjmee+45IiMjTfbJz8/n7rvvBmqKh4eHBwCrVq1CpVKxdetWXF1d2blzZ71rzeaqjWH27NkW9/Xw8KCgoKBerEK0FaXkU1BQECtWrOCWW24hKCiIgIAAXn31Vezt7QkKCjLax93dvV6+dMbckUt2CpOTk8Mnn3zC+fPngZpJt23bNgYPHgzA9OnT+eCDD/j1118BuHr1KikpKfXG+PjjjykpKSE/P5/ExETDdy1lZWU4OjrSrVs3CgoK+Oijj6yKccqUKWzYsIHDhw+j1+spLy9n9+7dlJaWNts3LCyMpKQkcnJyuHbtGu+8845F2+7ZsydnzpyxKm5x81FqPt1xxx3Y29uzdetWgoKCcHZ2pkePHnz77bcmC1J4eDifffYZ58+fp6SkhA8++KDe+s6QG1KQFMbZ2ZnDhw8zZcoU/Pz8mDp1Kv369WPBggVAzfcrTz/9NC+++CJDhgxh/Pjx7N27t94YY8aMYdKkSUyYMIFRo0YxefJkAGJjYzl27BiBgYE888wzPPjgg1bFOHDgQJYuXcqSJUsICgriwQcfNNy00JyRI0cyY8YMYmJiGDduHH5+fgBm34YbGxvLggULCAwMlLvsRLOUnE9Dhw41fDdV+1qv13PPPfcYbT916lRGjBhBVFQUEydObLS9mJgYQ0FbtmyZRbEohUr+QF/n0r9/f7777jv69OnT3qGYJScnh/Hjx3P06FFsbOQKslCWjpZPHZ2cIYk2969//YvKykpKSkp44403GD16tBQjIYQUJNH2NmzYwLBhwxg3bhwajYbXXnutvUMSQiiAXLITQgihCHKGJIQQQhHkwr0JOp2OsrIybG1tUalU7R2OUAC9Xk9VVRVOTk5Gf3FRNCZ5JOpqLoeaLEgzZ85k3LhxTJ8+vd6AY8aMIT4+3uT98uYoKCggLi6Ozz77zKr+Z8+eJTo6mtTUVKtjaEpZWRknTpy4IWOLjq1fv3507drV7PaSR5JHoj5TOdRkQYqOjmbt2rX1Eik1NRUbGxuzkkin06FSqYx+MvL09LQ6iVpCq9Wi0WiabWdrawvUHLi2flT9gax8knafpKjkOk4ONT+ismvVuHXvwqRR3tw3oPHjdhr2c+vehUF9e3Ak55Lhdd2+61KOsSfzHHqdHpVaxQCvLjz/xAirYli1Lo3s3MuG1759XHnpicAW7Xdz+9pSWVlZ9R5hZI7KykpOnDhhmBvmkjyqn0cN595Iv1t5Itz4795Y0x5Mz8mmxjI1/0wtt2YOteUcbwlr9s0czeVQkwVp7NixLF68mJMnT+Lt7Q1AUlISkyZN4sMPP+Tbb79Fq9Xi6enJ0qVLcXd3JyEhgdzcXMrLyzlz5gyJiYm8+eabHDhwADs7OxwdHdmwYUOjT2YZGRmsWLHC8JylefPmMWLECI4cOcLf/vY3ysvLcXR05OWXX2bQoEGNYt27dy//+Mc/0Gq1uLm5sWTJEvr06UNqairLly8nMDCQo0ePMnv2bEaPHt3sgatNfjs7O+zt7Ztt31p2p5/h7Y1ZVFRpASgu0xrWFZeVkbAxCz0aRgV4NdOvjP+eKzPaN/vUJbbvP12v/75jpXT9OpvZk/0siuGVNT9y+OSlemPtP3aRpZ8cYtnsEZjLWPym9rW1WPtztfTSk+TR73m0ZlNmo7n31b7TVFarmD3Zr1F/S9sDJufkM3//gaKrlfWW147le2cPo/Pv2Klivk87a3RedsWyOdQec7wlbuT7nqkcavJCuJ2dHREREYbfwi8tLWXnzp14enpy+vRpvvzyS5KTkwkJCTE8vBBqHp++bNkyvv76a/Lz89m/fz/bt29n69atvP/++422U1xcTGxsLH/5y1/YunUrycnJDBw4kMrKSubMmcPzzz/P119/zQsvvMCcOXPq/ZkDqHnI4bx581i5ciVff/0148ePJy4uzrD+xIkTjB8/ni+//NKsJGpPiSnZhglrTEWVlsSUxk+/bq5f3b47Uk8bXV+73JIYGiZ+LVPLTTG2TVP72tFIHv2uubnX0uVgeu41LEZ1xzI1/3aknm61edmZ53hrafamhsmTJxserZGSkkJAQAC7d+8mKyvL8Kd1tVotzs7Ohj4hISG4ubkBNX/7Q6vV8vLLLxMcHGx0ImdmZtK3b1+GDBkCgEajoXv37vzyyy/Y2toyfPhwAIYNG4atrS2nTp3CycnJ0P/w4cP4+PgYPn1GR0ezePFiw7PV+vTpg7+/v1UHKCsry6p+1rpw+ZpZbdLT0y3u11w7nU5Penq61TE01Nx6c+IyZzvWulHjGiN5VJNHOp3x3zKpnXvGllvS3ho6nd7k/DO1/dr2Sp/jLdEeMTVbkHx8fHB3d2ffvn1s3ryZP/zhD2zfvp3Zs2cbnunUUN1J3rVrV7755htSU1PZv38/K1euJDk5uV57U78KpdfrjZ7aNVxmql0tR0dHk+uaM2DAgDa9ZOeecqnZguDu6kBAQIDF/Wr7Xiq5bjTR1GoVAQEBlsWw/qzJNg1jbHI8E9s0tq+tIT093eJxKyoqrP6AInlUk0fqDXlNzr1Gyy1sDzQ5J41Rq1X06N7F6PxTq1VGt+/u6gAoe463hDX5YY7mcsise1ejo6NJSEjgt99+IzQ0lNDQUNavX2/464uVlZUm/+hTUVER169fJyQkhLi4OLp27droibT+/v7k5OSQkZEB1HxSLCkp4a677qKyspIDBw4AcODAAaqrq7njjjsa9c/Ozjb8xcXk5GTuueeeep82O4qYcF/sbU1/WWxvqyEm3NfifnX7hgX3Nrq+drklMQz27mG0janlphjbpql97agkj2h27rV0OZiee25djd+cFBbc2+T8Cwvu3Wrz8maY4y1l1u8hRUREsGLFCqZNm4adnR0TJkyguLiYJ554Aqj5ZPXoo48a/SuH+fn5LFy4kOrqarRaLSEhIfj5+XHu3DlDGxcXFxISEnj99dcpLy9HrVYzf/58hg8fzltvvVXvy9g333yz0V1vbm5urFixgri4OKqrq3Fzc+ONN95oyXFpN7VfbiamZHPx8jWcHWvuRiktr6KnqwMx4b5GvwBt2K+nqwNBPh4cOl5oeF3bt7btjtTT6HR61GoVQ+5yMHxJbEkMy2aPaPQl8mDvHhbd0GAqflP72lFJHmGYY3XnXlhwb5M3KFjaHpqek2s2ZTY5lrH553tnD6PL09MLjWzdtJthjreUPDrIhNpTy7a+ZNdebtQpulK15JLdzTInWkNnPmadOWdu9CU7U/NBft1cCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKYNNWG0pJSeH9999Hr9dTUVHBvffey6pVq0y2v3LlCl988QWzZs1qqxCbtWZTJjtST6PT6VGrVYQF92b2ZD+jbXennyExJZuLl6/R09WBIB8PDh0vNLyOCfdlVIAXAE++lkLR1UpDXyd7DY6OdkbbNjWuna2aymodej0Wx/eATxcCAlr1cIlW1hlySMka5kRt3pla3hRT7xWmxmrqvcXSsQBeWfMjh09eMsQz2LsHy2aPaNXj0lrt61Lp9Xq9VVFaoLCwkMjISJKTk+nVqxd6vZ7jx4/j6+trss/Zs2eJjo4mNTX1RodnVEVFBVlZWQwYMAB7e3vWbMpk+/7cRu0eHtan0Zv+7vQzvL3xMBVVWpPj29tqiJ0ymE+/zqpXjJpqCzQ7rrXx2WpUzJnmb/bE6ejS09MJsLACN5wTbakj5hC07zGzhLGcsLfVMCbwdr5PO9toeeyUwXSl0OgcMvVeMdi7B8dzixuN5dPHpV7xqPXwsD4AFo0VO2UwOw/mGh3PkqJUmx+mjkvslMFG3yuaa9/cfGiTM6SLFy9iY2ODi4sLACqVypBIhw8fZuXKlZSVlQEwZ84cRo0axZIlS7h69SpRUVE4ODiwYcMGcnNzWbRoEUVFRdjY2DB37lxCQkK4du0a8+fP5+TJk9jY2HDnnXfy5ptvcuHCBV588UXKysqoqKhg5MiRzJs3z6p92JF62uTyhm/4iSnZzRaNiiotiSnZzRajum1r/28Jc+Or0upJTMm+aQpSR9MZckjJjOVERZXWcGbScHliSjZ/Cu9hdCxT7xXGikRFldbo8qbGaWqsxJRsLly+Znaf5pg6LqbeKyxt31CbFCQfHx8GDRrEqFGjCA4OZsiQIURFRaHRaHj11Vf54IMP8PDwoLCwkMmTJ7Nt2zYWLVpEdHQ0W7ZsMYwTFxfH1KlTmTJlCidPnuTxxx8nJSWF9PR0rly5wvbt2wEoKSkBoFu3brz33ns4OTlRVVXFzJkz2bt3LyEhIWbHnpWVBdBoUtbS6fSkp6fXW2ZqQjRkbjtL29ZlSXwXLl9r1LYz60j72pFzCH7PI6UylROm8r62vbE5ZKqPpawZp7n3CUvmfHp6usXvFS19b2mTgqRWq3n33Xc5ceIEhw4dYufOnXz88cfMmzePs2fP1rvGrVKpyM3NxdXVtd4YpaWlZGdnEx0dDYC3tze+vr5kZmbi4+PDf//7XxYvXszQoUMZNWoUAFqtlhUrVpCRkYFer+fixYscP37comSqPbVUb8gzOkHUalWj03b3lEtmFRB3VwezC427qwNgeWGyJD53VweLL2N1VC25ZNceOnIOAYq/ZGcqJ9RqldG8r81HY3PI1HuFpdRqFWBZYWruPcXcOV+bH5a+VzTXvrkcatO77Pr168fjjz/Op59+SteuXdHr9fTv358tW7YY/u3Zs4eBAweaPaZKpcLLy4vt27dz//33s3//fqKioqioqODTTz/lypUrbNy4ka+//pqxY8dSUVFhVexhwb3NXh4T7ou9rabJ8extNcSE++LW1a7Zbde2NWdca+Oz1aiICTf9fYRQho6cQ0pmLCfsbTWEBfc2urypXDH1XjHYu4fRsQZ7G7/0Fxbc2+KxYsJ9TY5nanlTTB0XU/tvafuG2qQgFRQUkJGRYXh9/vx5ioqK8Pb2Jjc3lwMHDhjWHTlyBL1ej7OzM9evX6e6uhoAZ2dnfH19SU5OBiAnJ4fjx48zePBgzp8/j0ajYezYsfz1r3+lqKiI4uJirl69iru7O/b29hQUFPD9999bvQ+zJ/vx8LA+hk8tarXK6A0DAKMCvIidMhh3VwdU1Hw6eHhYn3qva7/k++dr4Y2KkpO9xmjb5sa1t1WjqgnP4vgihrrI90cK1hlySMmM5UTslMHMnuxndHlTuWLqvWLZ7BFGx1o2e4TJ9xZLxxoV4MWy2SMaFR9r77IzdVxM7b+l7Rtqk7vs8vLyWLhwIXl5eXTp0gWdTsfjjz/O9OnTOXLkCG+88QYlJSVUVVXh5eXFe++9h1qt5pVXXiE9PZ3u3bs3+YXsnj17DLe/6nQ6IiMjeeaZZ8jLy+P555+nurqaW265BScnJ+644w7+/Oc/NxtzR7k7qLVYcwmrI+tod9l1xByCzp1HnTlnbtS+NTcf2qQgdUSdOZGM6czJZUxHK0gdVWc+Zp05Z9qrIMmTGoQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIlhdkGbOnMmGDRvqLdPr9YSGhhITE0NaWprFYx49epSXXnqp2XYFBQXMmDHD4vGFUBLJISHqs7G2Y3R0NGvXrmX69OmGZampqdjY2JCYmGi0T3V1NTY2pjc5cOBAVq1a1ey2PT09+eyzzywP+ia3O/0MiSnZXLx8DWdHWwBKy6vo6epAnx4q3kn5jouXr9HT1YEgHw8OHS80vI4J92VUgJfRcV9Z8yOHT14yvNaoQaej2X514+np6sCtPRw5+t8idDp9o7aDvXuwbPYIo+Os2ZTJjtTT6HR61GoVYcG9mT3Zz8Kj0/pjNUdyyDwN50ndOWVqnamfozU/34bzu3YubjtYxJINW42O9cf4nZwpLDP08fJw4t35Y03G29Q+ttWxVAKVXq9vnP1mqKys5IEHHuDzzz/H29sbgHnz5nHXXXfx008/8dRTTzF69GgWLFiAk5MTv/32G5cvXyYpKYnVq1ezfft2XFxcGDp0KPv37ycpKYnU1FTi4+NJSkri7NmzREdHM336dPbs2cO1a9f429/+RmBgoGFdamoqABkZGaxYsYKysjJDHCNGjCA+Pp6DBw9SVVWFq6sry5cv57bbbjNr/yoqKsjKymLAgAHY29tbc4gUZXf6Gd7eeJiKKq1V/e1tNcROGdxo8jZMVnP7WROPsaK0ZlMm2/fnNmr78LA+Tb7RpKenExAQYNFYrT0nOnsOQcvzyNg8qZ1TgNF1Pn1cjM5JLw+nekWiVlNzxdT8dutqR9HVSqNjHc25aHQ7bl3tKLuubRTvmMDb+T7trNF9bM1i0dSxbLgdY/nRGpqbD1ZfsrOzsyMiIoKkpCQASktL2blzJxMnTmzUNiMjg4SEBJKSkvjhhx/YtWsXW7Zs4YsvviA3t/EbQK3i4mL8/Pz46quv+NOf/sTKlSuNtomNjeUvf/kLW7duJTk5mYEDBwIwa9YsNm/ezNatWxk/frzR/jeLxJRsq4sRQEWVlsSU7EbLmypGTfWzJh5j29qRetpoW1PLm9KaY5lDcqh5xuZJ7Zwytc7UnDRWJKDpn6+psYwVo9qxTG2n6Gql0Xh3pJ42uY+tqaljqRRWX7IDmDx5Mk8//TQvvvgiKSkpBAQE4Onp2ahdWFgYjo6OQM0lifDwcMPrCRMm8O677xod39HRkdGjRwPg5+dHfHx8ozaZmZn07duXIUOGAKDRaOjevTsAe/fuZf369ZSXl1NdXW3VPmZlZVnVT2kuXL7WKmOkp6e3Sj9r42k4jrHLe7XLm4u1Ncey1s2QQ2B9HpmaJ60xn2u15s/X1Byypo+1+WZKU8fS2HZu1JxvSosKko+PD+7u7uzbt4/Nmzfzhz/8wWi72sSBmi9tVSqVWePb2dkZ/q9Wq40mhKkrjnl5efz9739n06ZNeHl58e9//5u4uDiztltXZ7lk555yqcVJ7O7q0Pg0fv1Zq/pZG0/DcdQb8owmtFqtavKSg7FLEs2NVXu5oTXdDDkE1ueRqXni7uoAtE5hanKumDG/G45laVEy1cdovrVAU8ey4XZu9CU7U1p823d0dDQJCQn89ttvhIaGNts+ODiYHTt2cO3aNXQ6HVu3bm3R9v39/cnJySEjIwMArVZLSUkJpaWl2Nra4u7ujk6na3Q3080mJtwXe1uN1f3tbTXEhPs2Wj7Yu4dV/ayJx9i2woJ7G21ranlTWnMsS0gOmWZsntTOKVPrTM1JLw8no8ub+vmaGsutq53R5WHBvU1ux62rndF4w4J7m9zH1tTUsVSKFp0hAURERLBixQqmTZtW79OYKWPGjCEjI4OoqCg8PT0ZPHgwJSUlVm/fxcWFhIQEXn/9dcrLy1Gr1cyfP5/hw4cTFhbGI488wq233kpQUJBFt9HWfmqsrDR+rbijGTbAAxUDSNp9kqKS6zg51Pzoy65V49a9C7e5qMgr1lNUch237l0Y1LcHR3IuGV5PGuXNfQM8qKioqDfuwqeCWLUujezcy4Zl6v93l11T/RrG49a9C54uDhw/U4zeyKdF3z6uvPREYKNxnorwxc5Gz57Mc+h1elRqFSP9buWJcN9GbRuydKzauWDlfUAmddYcgpbnkbF5UjunABPrerEu5ZiRn+M9JpabnivG5nftXHxz3Y9knbneaCyAhe/9RP6lckOfXj0cWfrc/RzIyjca7z13uhjdx+bmcGsdS2Pbac1t12ouh6y+y64lSktLcXZ2RqfT8fLLL+Ph4cHcuXPbOowmXb16lRMnTrR3GEKB+vXrR9euXds1ho6QQyB5JIwzlUPtUpD+9Kc/kZeXx/Xr17n33ntZvHgxzs7ObR1Gk3Q6HWVlZdja2pp9vV50bnq9nqqqKpycnFCr2/chJx0hh0DySNTXXA61S0ESQgghGpJn2QkhhFAEKUhCCCEUQQqSEEIIRZCCJIQQQhGkIAkhhFAEKUhCCCEUQQqSEEIIRWjxo4NEx3bq1CkWLFhAcXExLi4uxMfHc8cdd7R3WDfM5cuXmTdvHqdPn8bOzo4+ffqwZMkS3Nzc2js00UF01pxRQm7IL8be5GJiYoiOjiYqKootW7awefNmk3+ttDMoLi7ml19+ITg4GID4+HhKSkpYvnx5O0cmOorOmjNKyA25ZHcTu3TpEseOHWP8+PEAjB8/nmPHjlFUVNTOkd04Li4uhoSDmr8RdO7cuXaMSHQknTlnlJAbUpBuYvn5+Xh6eqLR1DySXqPR4OHhQX5+fjtH1jZ0Oh3/93//Z9affBACbp6caa/ckIIkblpLly7F0dGRJ554or1DEUJR2is35KaGm1ivXr0oKChAq9Wi0WjQarUUFhbSq1ev9g7thouPjyc3N5f33nuv3Z/cLTqOmyFn2jM3JBNvYj169MDX15dt27YBsG3bNnx9fTv9HWerV68mKyuLd955x6w/iCdErc6eM+2dG3KX3U0uJyeHBQsWcOXKFbp160Z8fDx33XVXe4d1w/z666+MHz+eO+64gy5dugBw++23884777RzZKKj6Kw5o4TckIIkhBBCEeSSnRBCCEWQgiSEEEIRpCAJIYRQBClIQgghFEEKkhBCCEWQgiSEEEIRpCAJIYRQBClIQgghFEEKkhBCCEWQgiSEEEIRpCAJIYRQBClIQgghFEEKkhBCCEWQgiSEEEIRpCDd5BISEoiLizO6LjU1lZCQkDaOqEZTcQmhZK0xd7du3cpTTz1lcv2MGTPYuHGjyfULFixg9erVLYqhPUhBUqjQ0FAGDRqEv78/w4cP569//StlZWXN9mtuoipRexY+cfPoSDkVGRnJJ598YlbbpKQkHn300RscUduQgqRg7733HhkZGSQnJ3P06FHWrFnT3iEJ0aFJTimbFKQOwNPTkwceeIBff/0VgMzMTKZPn05gYCCRkZGkpqYCsHr1atLS0liyZAn+/v4sWbIEgGXLljFy5EiGDBnCpEmTSEtLsyqOgoIC/vznP3PfffcRGhpKYmKiYV1CQgLPP/888+bNw9/fn0ceeYSjR48a1v/nP/9hwoQJ+Pv7M2fOHF544QVWr15NeXk5s2bNorCwEH9/f/z9/SkoKACgqqrK5HhCtER75dQTTzzBt99+C0BaWhr9+/dnz549APz8889ERUUBjc96fvrpJ8LCwggICGDJkiXU/qHvnJwcXn31VTIzM/H39ycwMNDQ58qVKzzzzDP4+/szZcoUTp8+3ZJD1iakIHUA+fn57N27F19fXwoKCnj22WeZPXs2Bw8eZP78+cyZM4eioiLmzp1LYGAgixYtIiMjg0WLFgEwcOBAvvrqKw4ePMj48eN5/vnnqaiosCgGnU7H7Nmz6d+/P3v37uWf//wn//znP9m3b5+hzQ8//MAjjzxCWloaoaGhLF26FIDKykpiY2OZOHGiIYadO3cC4OjoyIcffoiHhwcZGRlkZGTg6enZ5HhCtFR75VRQUBAHDx4EagqSl5eX4fWhQ4cICgpq1KeoqIg///nPvPDCCxw4cIDevXvz73//G4C+ffuyePFi/Pz8yMjIqFcYv/nmG2JjYzl06BC9e/fuEN8pSUFSsD/96U8EBgby2GOPERQUxHPPPceWLVsICQlh5MiRqNVq7r//fgYMGGD4lGVMVFQUrq6u2NjY8NRTT1FZWcmpU6csiuXo0aMUFRURGxuLnZ0dXl5eTJ06le3btxvaBAQEMHLkSDQaDVFRURw/fhyAw4cPU11dTUxMDLa2tjz44IMMHDiw2W2aGk8Ia7V3Tg0dOrReAXr22Wc5dOiQ4fXQoUMb9dm7dy/e3t6EhYVha2vLk08+Sc+ePZvd1rhx4xg0aBA2NjZERkaSnZ3dbJ/2ZtPeAQjT3nnnHYYPH15v2blz59ixYwe7du0yLKuuriY4ONjkOJ988gkbN26ksLAQlUpFaWkply9ftiiWvLw8CgsL610S0Gq19V7XTZIuXbpQUVFBdXU1hYWFeHp6olKpDOt79erV7DZNjWdjI9NWWKe9c8rPz4/ffvuNixcvcvz4cdasWcNbb71FUVERR44cqZdPtQoLC7nlllsMr1UqlVX5U15e3myf9iaZ3cH06tWLqKgoli1bZlb7tLQ0PvzwQ9auXcvdd9+NWq0mKCjIcA3aku3efvvtfPfddxbH7O7uTkFBAXq93lCU8vPz8fLyAqhXqIRoa22ZUw4ODtx7770kJiZy9913Y2dnh7+/P2vXrqV37964ubk16uPu7s758+cNr/V6Pfn5+YbXnSl/5JJdBxMZGcmuXbvYt28fWq2WiooKUlNTDRO2Z8+enDlzxtC+rKwMjUaDm5sb1dXVvP3225SWllq83UGDBuHs7MwHH3zA9evX0Wq1nDhxgiNHjjTb18/PD41Gw7p166iurmbnzp31blDo0aMHxcXFXL161eK4hGipts6poUOHsm7dOsP3RcHBwfVeNzRy5Eh+/fVXvvvuO6qrq0lMTOTixYuG9T169KCgoIDKykprdl9RpCB1ML169eLdd9/l/fffZ9iwYYwcOZKPP/4YnU4HQExMDN9++y1BQUEsW7aMESNGEBISwkMPPURoaCj29vZmne43pNFoWLNmDcePH2fMmDHcd999vPLKK2Ylop2dHQkJCWzatImgoCC2bt3KqFGjsLOzA2q+mH3kkUcYO3YsgYGBhrvshGgLbZ1TQUFBlJWVGQpQw9cNubm58eabb7Jq1SqCg4PJzc1lyJAhhvX33Xcf3t7ejBgxosnLjB2BSm/ptRshWsGUKVOYPn060dHR7R2KEEIh5AxJtImDBw9y4cIFqqurSU5O5pdffuGBBx5o77CEEAoiNzWINnHq1CleeOEFysvL8fLy4q233sLDw6O9wxJCKIhcshNCCKEIcoZkgk6no6ysDFtb2051W6Wwnl6vp6qqCicnJ9RqudptDskjUVdzOSQFyYSysjJOnDjR3mEIBerXrx9du3Zt7zA6BMkjYYypHGqyIM2cOZNx48Yxffp0wzK9Xs+YMWOIj483eZuiOQoKCoiLi+Ozzz6zqv/Zs2eJjo42PASxtdna2gI1B6729uTWlJWVxYABA1plrANZ+STtPklRyXXcundh0ihv7htg+a3dWVlZZJ5RsyfzHHrd71dyVWoVep2+0dh1t1u37S2uDpy/fM2sMcyJqbWOU0tVVlZy4sQJw9wwl+RR6+RRW88FY3kFNFp28sxlQ86o1CpG+t0K0GjZE+H3sC7lWKPlBZfKyc79/SkPvn1cud/vtlbJ6bqUkEvN5VCTBSk6Opq1a9fWS6TU1FRsbGzMSiKdTodKpTJ6qu7p6Wl1ErWEVqtFo9E02642Zjs7O+zt7W9ILK0x7u70M7y9MYuKKi0AxWVlJGzMQo+GUQFeFo217WARaSdNP16k7thAve3WdbmJX3C1Jr4bdfytZemlJ8mj1sujtpoLxvLq//viCHo9aP/fB63isjJW/d9hGn4L/9W+xk/V/mrfadJ/ucSZwrJm2+4/dpH9x37/xdeW5HRDSsklUznU5IXwsWPHkpuby8mTJw3LkpKSmDRpEh9++CGTJ09m4sSJPPfcc1y4cAH4/a8l/vGPfyQqKori4mJee+01wsLCiIyMNCTl2bNn6/0SV0ZGBo8++iiRkZFERkby448/AnDkyBGmTZtGREQE06ZNM/lkgL179zJhwgQiIiJ48sknyc3NBWoSPyoqiqVLlzJ16lT27t1r7jHrEBJTshsVhYoqLYkplj9IMT2n+Wdd1Y5tbLvmsja+jkryqOMxNr+rtXpDMaplyS1hDYuRJW6WnGnyDMnOzo6IiAiSkpKYN28epaWl7Ny5k4ULF/Lvf/+bL7/8ErVazfr163n99ddZtWoVUPOsp6SkJNzc3Dh27Bj79+8nJSUFtVpNSUlJo+0UFxcTGxtLQkICQ4YMQavVUlpaSmVlJXPmzGH58uUMHz6c/fv3M2fOnEbPU7t06RLz5s1j3bp1eHt7s3HjRuLi4gx/5fHEiRO89tprLFy40OIDlJWVZXEfc6Wnp7d4jAuXr5lcbun45iaXqW1awpL4WuM4tSfJo9bLo7aaC60xx1ubNTndkNJzqdmbGiZPnszTTz/Niy++SEpKCgEBAezevZusrCwmTpwI1Jy+Ozs7G/qEhIQYHhLo5eWFVqvl5ZdfJjg4mNGjRzfaRmZmJn379jU8DkOj0dC9e3d++eUXbG1tDU/nHTZsGLa2tpw6dQonJydD/8OHD+Pj44O3d8013ujoaBYvXmx4rE2fPn3w9/e36gANGDDghpzmpqenExAQ0OJx3FMuGU0ed1cHi8dX/d9Zs4qSu6sD0LKkNTe+1jpOraGiosLqN1bJo5bnUVvOBVN51Z6syem6lJBLzeVQs/eu+vj44O7uzr59+9i8eTPR0dHo9Xpmz57Nli1b2LJlC9u2bWPDhg2GPnUnedeuXfnmm28IDw/nl19+4ZFHHjFclqhl6leh6j4duq6Gy0y1q+Xo6NjcbnZYMeG+2NvWv5Zvb6shJtzX4rEC+jZ/nGrHNrZdc1kbX0cmedSxGJvfNhoVGnX942PJ14leHk7NNzLhZskZs36ZIjo6moSEBH777TdCQ0MJDQ1l/fr1hssGlZWVJv94WlFREdevXyckJIS4uDi6du1a78m5AP7+/uTk5JCRkQHUfFIsKSnhrrvuorKykgMHDgBw4MABqqurueOOOxr1z87OJicnB4Dk5GTuueeeep82O6tRAV7EThmMu6sDKmo+RcVOGWzVl5/jh7rx8LA+qBskXe3rumPX3W7Dtl4eTmaNcbORPOo4jOXV89P8eWG6f71lLz46pF7OqNUqHh7Wx+iyd+ePNbp8sHePetse7N2Dlx4b0io53dGY9XtIERERrFixgmnTpmFnZ8eECRMoLi7miSeeAGo+WT366KP4+Pg06pufn8/ChQuprq5Gq9USEhKCn58f586dM7RxcXEhISGB119/nfLyctRqNfPnz2f48OG89dZb/O1vf6O8vBxHR0fefPPNRrePurm5sWLFCuLi4qiursbNzY033nijJcelQ6ktEK1h9mQ/Zk/2a/Pt3gwkjzoWU/O74bJRAV7MnuzX6JKYsTyyNL9uNvLoIBNqr3Uq/Tuk1iQxNe1Gz4nOqDWPmZLmgjESX/Oamw/y/BMhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhtVpBSUlKYMGECUVFRhIWF8dJLLzXZ/sqVK3z44YdtFJ0Qyic5JDo7m7bYSGFhIYsXLyY5OZlevXqh1+s5fvx4k32uXLnCRx99xKxZs9oiRLOs2ZTJjtTT6HR6s9qr1SrCgnsze7Ifu9PPkJiSzcXL1+jp6sADPl0ICLjBAYtOo7PkEEDES1saLft6VVSjZXXzTa1WMeQuB5M50zC/YsJ9GRXg1dqhixusTQrSxYsXsbGxwcXFBQCVSoWvry8Ahw8fZuXKlZSVlQEwZ84cRo0axZIlS7h69SpRUVE4ODiwYcMGcnNzWbRoEUVFRdjY2DB37lxCQkK4du0a8+fP5+TJk9jY2HDnnXfy5ptvcuHCBV588UXKysqoqKhg5MiRzJs3z6p9WLMpk+37cy3qo9Pp2b4/l7wLpRzPLaaiSgvAhcvX+Prgde6884wkjTBLZ8ghMF6MapfXLUoN802n05N2spw1mzKZPdmvXt/d6Wd4e+Phevn19sbDAJJfHUybFCQfHx8GDRrEqFGjCA4OZsiQIURFRaHRaHj11Vf54IMP8PDwoLCwkMmTJ7Nt2zYWLVpEdHQ0W7b8PoHj4uKYOnUqU6ZM4eTJkzz++OOkpKSQnp7OlStX2L59OwAlJSUAdOvWjffeew8nJyeqqqqYOXMme/fuJSQkxOJ92JF62ur9P3zyUqNlVVo9iSnZkjDCLJ0hhyxhKt92pJ5uVJASU7INxahWRZVW8qsDapOCpFareffddzlx4gSHDh1i586dfPzxx8ybN4+zZ8/Wu6SgUqnIzc3F1dW13hilpaVkZ2cTHR0NgLe3N76+vmRmZuLj48N///tfFi9ezNChQxk1ahQAWq2WFStWkJGRgV6v5+LFixw/ftyiZMrKygIw+zKdJS5cvkZ6enqrj9sSSosHlBlTW+vIOQS/51FT6v6cTeWbTqdvNB8uXL5mtG175JfS56rS42uTglSrX79+9OvXj8cff5yHH34YvV5P//79+fzzzxu1PXv2rFljqlQqvLy82L59OwcOHGDv3r2sXr2ar7/+mk8//ZQrV66wceNG7O3tWbhwIRUVFRbFPGDAAOzt7VFvyGv1ouTu6kCAgr5ISk9PV1Q8oKyYKioqzHpjvZE6Yg7B73nEetMx1f05m8o3tVrVaD64p1wyWpTaOr+UNFeNUUJ8zeVQm9xlV1BQQEZGhuH1+fPnKSoqwtvbm9zcXA4cOGBYd+TIEfR6Pc7Ozly/fp3q6moAnJ2d8fX1JTk5GYCcnByOHz/O4MGDOX/+PBqNhrFjx/LXv/6VoqIiiouLuXr1Ku7u7tjb21NQUMD3339v9T6EBfe2uu9g7x7Y22rqLbPVqIgJ97V6THFz6Qw5ZAlT+WZseUy4b6P8srfVSH51QG1yhlRdXU1CQgJ5eXl06dIFnU7HCy+8wD333MO7777LG2+8wfLly6mqqsLLy4v33nsPFxcXIiIiiIiIoHv37mzYsIGVK1eyaNEi1q5di42NDStWrMDNzY09e/awatUqAHQ6Hc888wyenp7MmDGD559/ngkTJnDLLbcwbNgwq/eh9rp1a95lJ9e3hbk6Qw5Bzd105txl1zDfau+ya/j9Efx+44LcZdfxqfR6fet/OdIJ1J5aGi41tDIlnD43JDE17UbPic6oNY+ZkuaCMRJf85qbD/KkBiGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIKNtR1nzpzJuHHjmD59umGZXq9nzJgx3H777cyZM4fAwECLxjx69Chr165l1apVTbYrKCggLi6Ozz77zKrYRdvYnX6GxJRsLly+hlqtQqfTY2+rprJah15fv+1g7x4smz3CaB/Wn63XtnZ5V0dbAK6WV9VbFxbcm9mT/cyO7+Lla/R0dSAm3Beg0bJRAV4tOxAmSA4JU9ZsymRH6ml0Or1hTvve2cPo3HxlzY8cPnnJ0Lc2lxo6cqqMd1K+q9d/58Fco32N5caXO3/hTGGZoa2XhxMD+/Y0O05zqPT6hm8N5tm+fTtr167lyy+/NCw7cOAAixYt4rvvvjPap7q6Ghsbq2tgm6qoqCArK4sBAwZgb2/f6uOnp6cTEBDQ6uO2RGvGtDv9DG9vPExFldbsPl4eThRevm5RH1MeHtanyaJkLD6NWoVKBdXa31PC3lZD7JTBjArwavU50dlzCFo3j5SYM3W1VnxrNmWyfX9uo+UqFfU+yNnbavBw7VKvSNRqWJR2p5/hrS8yqNI2/3bf0jw0fJCsE6e5OWT1JbuxY8eSm5vLyZMnDcuSkpKYNGkSM2bMYNeuXQAsWLCApUuXMnPmTKZOnQrA6tWrGTduHFOmTOGNN95g0qRJAKSmphr+f/bsWYKDg1m9ejUTJkzgoYceIi0trd66WhkZGTz66KNERkYSGRnJjz/+CEB8fDzR0dFERkby5JNPkpeXZ+3uCgslpmRbPKHPFJa1SjEC2JF6usn1xuLT6vT1ihFARZWWxJTsVompIckhYYypudvw1KGiSmu0GAH1znqgZr6bU4yg5XlYtxiBZTlk9UctOzs7IiIiSEpKYt68eZSWlrJz505SUlL46aef6rXNyMhg3bp1ODo68sMPP7Br1y62bNlCly5dmDNnjsltFBcX4+fnx9y5c9m6dSsrV65kw4YNjdrExsaSkJDAkCFD0Gq1lJaWAjBr1izmz58PwMaNG1m5ciWrV6+2aD+zsrIsam+J9PT0Gza2tVorpguXr7XKONbS6fRN7osl8V24fO2G/KxulhyC1ssjJeZMXa0RX8M3dGvVjaW989HcHGrRuf/kyZN5+umnefHFF0lJSSEgIABPT89G7cLCwnB0dARqPsGFh4cbXk+YMIF3333X6PiOjo6MHj0aAD8/P+Lj4xu1yczMpG/fvgwZMgQAjUZD9+7dAdi7dy/r16+nvLyc6upqq/ZRLtlZxz3lUrsmgVqtanJfLInP3dWBgIAAw+WG1nQz5BC0Th4pMWfqaq341BvyWqUo1Y2lvfPR3Bxq0V12Pj4+uLu7s2/fPjZv3kx0dLTRdrWJAzVf2qpUKrPGt7Oz+z1QtdpoQpj6CiwvL4+///3vrFq1im3btrF8+XIqKyvN2q5ouZhwX+xtNRb18fJwsriPKWHBvZtcbyw+jVqFjab+3LS31RhudrgRJIdEQ6bmbsMfub2tBi8PJ6NtB3v3qPc6JtwXW415c6aleahWW59DLf52NDo6moSEBM6dO0doaGiz7YODg0lISODJJ5/E3t6erVu3tmj7/v7+vPLKK2RkZODv72+43FBaWoqtrS3u7u7odLpGlymaU5ukNzIBKyoqbtjY1mqtmIYN8EDFAJJ2n6So5DoqtQq9To+djZpKrQ4avAf69nHlpScCOZCV36hPQ7XLnRxqpm/Ztep660b63coT4b5N7kvD+Ny6d2HSKG+ARsvuG+BBRUWFYS5YeR+QSZ01h6D180iJOVNXa8T3VIQvdjZ69mSeQ6/TG+a0t5erkbnZi1Xr0sjOvWzoX5tLdWMZNsCDs2dcOZRTUa//T5l5RvvWzcPatt/8+F/yL5Ub2vbq4Uj/Pq5mxmleDrW4IEVERLBixQqmTZtW79OYKWPGjCEjI4OoqCg8PT0ZPHgwJSUlVm/fxcWFhIQEXn/9dcrLy1Gr1cyfP5/hw4cTFhbGI488wq233kpQUJDhC11zVFXV3Ep84sQJq2Nrzo38fsparRmTMxAzytWibVvaxzidWfvReFs1XwQ3XJaVVf8L4qqqKrp06dLCGH/XWXMIWj+PlJgzdbVWfH5e4Od1S50lOuCS0bn5kF8XHvLr1Wwcvl6O+Ho51lliuq+x3Jg2ojvQvcGoOrPjrMtUDll923dLlJaW4uzsjE6n4+WXX8bDw4O5c+e2dRhN0ul0lJWVYWtra/blEdG56fV6qqqqcHJyQq1u398p7wg5BJJHor7mcqhdfqFh/vz55OXlcf36de69915mzZrVHmE0Sa1W07Vr1/YOQyhMa54ZtURHyCGQPBKNNZVD7XKGJIQQQjQkz7ITQgihCFKQhBBCKIIUJCGEEIogBUkIIYQiSEESQgihCFKQhBBCKIIUpHa0ZcsWIiIiuOeee1i3bl27xXHq1CmmTZvGQw89xLRp0/jtt9/aLZZa8fHxhIaG0r9//xv6tAzRsSglZ+pSYv7U1ZFySQpSO/L19WX16tWMHz++XeN49dVXeeyxx/j222957LHHWLRoUbvGAzWPx/n888+57bbb2jsUoSBKyZm6lJg/dXWkXJKC1I769euHt7d3uz6G5tKlSxw7dsyQ4OPHj+fYsWMUFRW1W0wAgYGB9OrVq/mG4qaihJypS6n5U1dHyiVl/FRFu8nPz8fT0xONpuZx8xqNBg8PD/Lz89s5MiGUT/KndbXLs+xuFhMnTuTcuXNG1/3888+GSSyEqCE5c3OTgnQDJScnt3cIzerVqxcFBQVotVo0Gg1arZbCwsIOc4ovOpeOkDN1Sf60Lrlkd5Pr0aMHvr6+bNu2DYBt27bh6+uLm5tbO0cmhPJJ/rQuedp3O9q2bRsrVqzgypUr2Nra4uDgwCeffIK3t3ebxpGTk8OCBQu4cuUK3bp1Iz4+nrvuuqtNY2ho2bJlfPfdd1y8eBFXV1dcXFz45ptv2jUm0f6UkjN1KTF/6upIuSQFSQghhCLIJTshhBCKIAVJCCGEIkhBEkIIoQhSkIQQQiiCFCQhhBCKIAVJCCGEIkhBEkIIoQhSkIQQQijC/w/UrNLGYUBnnAAAAABJRU5ErkJggg==\n",
|
||
"text/plain": [
|
||
"<Figure size 432x288 with 4 Axes>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"sep_len = X_test[\"sepal.length\"]\n",
|
||
"sep_with = X_test[\"sepal.width\"]\n",
|
||
"pet_len = X_test[\"petal.length\"]\n",
|
||
"pet_with = X_test[\"petal.width\"]\n",
|
||
"\n",
|
||
"figure, axes = plt.subplots(nrows=2, ncols=2)\n",
|
||
"\n",
|
||
"axes[0, 0].plot(sep_len, predictions, 'bo')\n",
|
||
"axes[0, 0].set_title(\"Sepal lenght\")\n",
|
||
"\n",
|
||
"axes[0, 1].plot(sep_with, predictions, 'bo')\n",
|
||
"axes[0, 1].set_title(\"Sepal width\")\n",
|
||
"\n",
|
||
"axes[1, 0].plot(pet_len, predictions, 'bo')\n",
|
||
"axes[1, 0].set_title(\"Petal length\")\n",
|
||
"\n",
|
||
"axes[1, 1].plot(pet_with, predictions, 'bo')\n",
|
||
"axes[1, 1].set_title(\"Petal width\")\n",
|
||
"\n",
|
||
"figure.tight_layout()\n",
|
||
"plt.show()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": []
|
||
}
|
||
],
|
||
"metadata": {
|
||
"colab": {
|
||
"collapsed_sections": [],
|
||
"name": "naive_bayes.ipynb",
|
||
"provenance": []
|
||
},
|
||
"kernelspec": {
|
||
"display_name": "Python 3 (ipykernel)",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.8.12"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|