239 KiB
239 KiB
Regresja wielomianowa
import ipywidgets as widgets
import matplotlib.pyplot as plt
import numpy as np
import pandas
%matplotlib inline
# Przydatne funkcje
def cost(theta, X, y):
"""Wersja macierzowa funkcji kosztu"""
m = len(y)
J = 1.0 / (2.0 * m) * ((X * theta - y).T * (X * theta - y))
return J.item()
def gradient(theta, X, y):
"""Wersja macierzowa gradientu funkcji kosztu"""
return 1.0 / len(y) * (X.T * (X * theta - y))
def gradient_descent(fJ, fdJ, theta, X, y, alpha=0.1, eps=10**-7):
"""Algorytm gradientu prostego (wersja macierzowa)"""
current_cost = fJ(theta, X, y)
logs = [[current_cost, theta]]
while True:
theta = theta - alpha * fdJ(theta, X, y)
current_cost, prev_cost = fJ(theta, X, y), current_cost
if abs(prev_cost - current_cost) > 10**15:
print('Algorithm does not converge!')
break
if abs(prev_cost - current_cost) <= eps:
break
logs.append([current_cost, theta])
return theta, logs
def plot_data(X, y, xlabel, ylabel):
"""Wykres danych (wersja macierzowa)"""
fig = plt.figure(figsize=(16*.6, 9*.6))
ax = fig.add_subplot(111)
fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)
ax.scatter([X[:, 1]], [y], c='r', s=50, label='Dane')
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.margins(.05, .05)
plt.ylim(y.min() - 1, y.max() + 1)
plt.xlim(np.min(X[:, 1]) - 1, np.max(X[:, 1]) + 1)
return fig
def plot_fun(fig, fun, X):
"""Wykres funkcji `fun`"""
ax = fig.axes[0]
x0 = np.min(X[:, 1]) - 1.0
x1 = np.max(X[:, 1]) + 1.0
Arg = np.arange(x0, x1, 0.1)
Val = fun(Arg)
return ax.plot(Arg, Val, linewidth='2')
# Wczytanie danych (mieszkania) przy pomocy biblioteki pandas
alldata = pandas.read_csv('data_flats.tsv', header=0, sep='\t',
usecols=['price', 'rooms', 'sqrMetres'])
data = np.matrix(alldata[['sqrMetres', 'price']])
# Funkcja regresji wielomianowej
def h_poly(Theta, x):
"""Funkcja wielomianowa"""
return sum(theta * np.power(x, i) for i, theta in enumerate(Theta.tolist()))
def get_poly_data(data, deg):
m, n_plus_1 = data.shape
n = n_plus_1 - 1
X1 = data[:, 0:n]
X1 /= np.amax(X1, axis=0)
Xs = [np.ones((m, 1)), X1]
for i in range(2, deg+1):
Xn = np.power(X1, i)
Xn /= np.amax(Xn, axis=0)
Xs.append(Xn)
X = np.matrix(np.concatenate(Xs, axis=1)).reshape(m, deg * n + 1)
y = np.matrix(data[:, -1]).reshape(m, 1)
return X, y
def polynomial_regression(theta, X, y, n):
"""Funkcja regresji wielomianowej"""
theta_start = np.matrix([0] * (n+1)).reshape(n+1, 1)
theta, logs = gradient_descent(cost, gradient, theta_start, X, y)
return lambda x: h_poly(theta, x)
n = 2
x, y = get_poly_data(data, n)
fig = plot_data(x, y, xlabel='x', ylabel='y')
plot_fun(fig, polynomial_regression(theta, x, y, n), x)
[<matplotlib.lines.Line2D at 0x23797dfe880>]