Завантажувати файли до ''
This commit is contained in:
parent
bb1de89d71
commit
1055515c1d
159
choice_tree.py
Normal file
159
choice_tree.py
Normal file
@ -0,0 +1,159 @@
|
||||
from data import tree_format
|
||||
|
||||
|
||||
def uniq_count(rows):
|
||||
# count uniq labels(names)
|
||||
count = {}
|
||||
for row in rows:
|
||||
lbl = row[-1]
|
||||
if lbl not in count:
|
||||
count[lbl] = 0
|
||||
count[lbl] += 1
|
||||
return count
|
||||
|
||||
|
||||
# didn't used
|
||||
def isnumer(val):
|
||||
return isinstance(val, int) or isinstance(val, float)
|
||||
|
||||
|
||||
class Question():
|
||||
|
||||
def __init__(self, col, value):
|
||||
self.col = col # column
|
||||
self.value = value # value of column
|
||||
|
||||
def compare(self, example):
|
||||
# compare val in example with val in the question
|
||||
val = example[self.col]
|
||||
if isnumer(val): # in case menu have prices
|
||||
return val >= self.value
|
||||
else:
|
||||
return val == self.value
|
||||
|
||||
def __repr__(self):
|
||||
# just to print
|
||||
condition = "=="
|
||||
if isnumer(self.value):
|
||||
condition = ">="
|
||||
return "Is %s %s %s?" % (tree_format[self.col], condition, str(self.value))
|
||||
|
||||
|
||||
def split(rows, quest):
|
||||
# split data into True and False
|
||||
t_rows, f_rows = [], []
|
||||
for row in rows:
|
||||
if quest.compare(row):
|
||||
t_rows.append(row)
|
||||
else:
|
||||
f_rows.append(row)
|
||||
return t_rows, f_rows
|
||||
|
||||
|
||||
def gini(rows):
|
||||
counts = uniq_count(rows)
|
||||
impurity = 1
|
||||
for lbl in counts:
|
||||
prob_of_lbl = counts[lbl] / float(len(rows))
|
||||
impurity -= prob_of_lbl ** 2
|
||||
return impurity
|
||||
|
||||
|
||||
def info_gain(l, r, current_gini):
|
||||
p = float(len(l)) / (len(l) + len(r)) # something like an enthropy
|
||||
return current_gini - p * gini(l) - (1 - p) * gini(r)
|
||||
|
||||
|
||||
def find_best_q(rows):
|
||||
# best question to split the data
|
||||
best_gain = 0
|
||||
best_quest = None
|
||||
current_gini = gini(rows)
|
||||
n_feat = len(rows[0]) - 1
|
||||
|
||||
for col in range(n_feat):
|
||||
vals = set([row[col] for row in rows])
|
||||
|
||||
for val in vals:
|
||||
quest = Question(col, val)
|
||||
|
||||
t_rows, f_rows = split(rows, quest)
|
||||
|
||||
if len(t_rows) == 0 or len(f_rows) == 0:
|
||||
continue
|
||||
|
||||
gain = info_gain(t_rows, f_rows, current_gini)
|
||||
|
||||
if gain >= best_gain:
|
||||
best_gain, best_quest = gain, quest
|
||||
|
||||
return best_gain, best_quest
|
||||
|
||||
|
||||
class Leaf:
|
||||
# contain a number of how many times the label has appeared in dataset
|
||||
def __init__(self, rows):
|
||||
self.predicts = uniq_count(rows)
|
||||
|
||||
|
||||
class Decision_Node():
|
||||
# contain the question and child nodes
|
||||
def __init__(self, quest, t_branch, f_branch):
|
||||
self.quest = quest
|
||||
self.t_branch = t_branch
|
||||
self.f_branch = f_branch
|
||||
|
||||
|
||||
def build_tree(rows):
|
||||
# use info gain and question
|
||||
gain, quest = find_best_q(rows)
|
||||
|
||||
# no gain = no more question, so return a Leaf
|
||||
if gain == 0:
|
||||
return Leaf(rows)
|
||||
|
||||
# split into true and false branch
|
||||
t_rows, f_rows = split(rows, quest)
|
||||
|
||||
# print out branches
|
||||
t_branch = build_tree(t_rows)
|
||||
f_branch = build_tree(f_rows)
|
||||
|
||||
# return the child/leaf
|
||||
return Decision_Node(quest, t_branch, f_branch)
|
||||
|
||||
|
||||
def print_tree(node, spc=""):
|
||||
# if node is a leaf
|
||||
if isinstance(node, Leaf):
|
||||
print(" " + "Predict", node.predicts)
|
||||
return # end of function
|
||||
|
||||
# Or question
|
||||
print("" + str(node.quest))
|
||||
# True branch
|
||||
print("" + '--> True:')
|
||||
print_tree(node.t_branch, spc + " ")
|
||||
# False branch
|
||||
print("" + '--> False:')
|
||||
print_tree(node.f_branch, spc + " ")
|
||||
|
||||
|
||||
def classify(row, node):
|
||||
# return our prediction in case the node is a leaf
|
||||
if isinstance(node, Leaf):
|
||||
return node.predicts
|
||||
# otherwise go to the child
|
||||
if node.quest.compare(row):
|
||||
return classify(row, node.t_branch)
|
||||
else:
|
||||
return classify(row, node.f_branch)
|
||||
|
||||
|
||||
def print_leaf(counts):
|
||||
# count prediction
|
||||
total = sum(counts.values()) * 1.0
|
||||
probs = {} # probability
|
||||
for lbl in counts.keys():
|
||||
probs[lbl] = str(int(counts[lbl] / total * 100)) + "%"
|
||||
return probs
|
281
data.py
Normal file
281
data.py
Normal file
@ -0,0 +1,281 @@
|
||||
# get out unique value from each column (dish, temperature or label)
|
||||
def uniq_val_from_data(rows, col):
|
||||
return set([row[col] for row in rows])
|
||||
|
||||
|
||||
# format to print a tree and something more
|
||||
tree_format = ["dish", "served", "origin", "cooked", "ingredients", "name"]
|
||||
|
||||
# course
|
||||
'''
|
||||
dish - (salad/meal/coffee/tea/non-alcho drink)
|
||||
served - (cold/hot/warm)
|
||||
origin - (Worldwide/America/Europe/Asia)
|
||||
cooked - (baked/boiled/mixed)
|
||||
ingridients - (2/4)
|
||||
'''
|
||||
|
||||
training_data = [
|
||||
|
||||
['salad', 'warm', 'Europe', 'mixed', 4, 'Cappon magro'],
|
||||
['salad', 'hot', 'Europe', 'mixed', 4, 'Panzanella'],
|
||||
['salad', 'cold', 'Europe', 'mixed', 4, 'Greek Salad'],
|
||||
|
||||
['salad', 'warm', 'Worldwide', 'mixed', 4, 'Jello salad'],
|
||||
['salad', 'cold', 'Worldwide', 'mixed', 4, 'Macaroni salad'],
|
||||
['salad', 'hot', 'Worldwide', 'mixed', 4, 'Fruit salad'],
|
||||
|
||||
['salad', 'cold', 'America', 'mixed', 4, 'Ambrosia Salad'],
|
||||
['salad', 'warm', 'America', 'mixed', 4, 'Crab Louie'],
|
||||
['salad', 'hot', 'America', 'mixed', 4, 'Taco salad'],
|
||||
|
||||
['salad', 'warm', 'Asia', 'mixed', 4, 'Singju'],
|
||||
['salad', 'cold', 'Asia', 'mixed', 4, 'Rojak'],
|
||||
['salad', 'hot', 'Asia', 'mixed', 4, 'Shirazi salad'],
|
||||
|
||||
['salad', 'warm', 'Europe', 'mixed', 2, 'Urnebes'],
|
||||
['salad', 'hot', 'Europe', 'mixed', 2, 'Shopska salad'],
|
||||
['salad', 'cold', 'Europe', 'mixed', 2, 'Wurstsalat'],
|
||||
|
||||
['salad', 'warm', 'Worldwide', 'mixed', 2, 'Garden Salad'],
|
||||
['salad', 'cold', 'Worldwide', 'mixed', 2, 'Mesclun'],
|
||||
['salad', 'hot', 'Worldwide', 'mixed', 2, 'Egg salad'],
|
||||
|
||||
['salad', 'cold', 'America', 'mixed', 2, 'Watergate salad'],
|
||||
['salad', 'warm', 'America', 'mixed', 2, 'Michigan salad'],
|
||||
['salad', 'hot', 'America', 'mixed', 2, ''],
|
||||
|
||||
['salad', 'warm', 'Asia', 'mixed', 2, 'Yam thua phu'],
|
||||
['salad', 'cold', 'Asia', 'mixed', 2, 'Som tam'],
|
||||
['salad', 'hot', 'Asia', 'mixed', 2, 'Yam pla duk fu'],
|
||||
|
||||
['salad', 'warm', 'Europe', 'baked', 4, 'Roasted Pepper Panzanella'],
|
||||
['salad', 'hot', 'Europe', 'baked', 4, 'Walnut Salad with Fried Eggs'],
|
||||
['salad', 'cold', 'Europe', 'baked', 4, 'Frisée and Wild Mushroom Salad with Poached Egg'],
|
||||
|
||||
['salad', 'warm', 'Worldwide', 'baked', 4, 'Grilled Mushrooms and Carrots with Sesame'],
|
||||
['salad', 'cold', 'Worldwide', 'baked', 4, 'Coleslaw'],
|
||||
['salad', 'hot', 'Worldwide', 'baked', 4, 'Smashed Potato Salad'],
|
||||
|
||||
['salad', 'cold', 'America', 'baked', 4, 'Wintery Beetroot and Lentil Salad'],
|
||||
['salad', 'warm', 'America', 'baked', 4, 'Cookie salad'],
|
||||
['salad', 'hot', 'America', 'baked', 4, 'Curtido'],
|
||||
|
||||
['salad', 'warm', 'Asia', 'baked', 4, 'Urap'],
|
||||
['salad', 'cold', 'Asia', 'baked', 4, 'Quinoa Salad'],
|
||||
['salad', 'hot', 'Asia', 'baked', 4, 'Kosambari'],
|
||||
|
||||
['salad', 'warm', 'Europe', 'baked', 2, 'Wilted Escarole Salad'],
|
||||
['salad', 'hot', 'Europe', 'baked', 2, 'Shrimp and Escarole Salad'],
|
||||
['salad', 'cold', 'Europe', 'baked', 2, 'Cappon magro'],
|
||||
|
||||
['salad', 'warm', 'Worldwide', 'baked', 2, 'Carrot Salad'],
|
||||
['salad', 'cold', 'Worldwide', 'baked', 2, 'Smashed Potato Salad'],
|
||||
['salad', 'hot', 'Worldwide', 'baked', 2, 'Bistro Salad with Roasted Vegetables'],
|
||||
|
||||
['salad', 'cold', 'America', 'baked', 2, 'Charred Romanesco with Anchovies and Mint'],
|
||||
['salad', 'warm', 'America', 'baked', 2, 'Warm Cauliflower and Herbed Barley Salad'],
|
||||
['salad', 'hot', 'America', 'baked', 2, 'Steak Salad with Horseradish Dressing'],
|
||||
|
||||
['salad', 'warm', 'Asia', 'baked', 2, 'Steak Salad with Horseradish Dressing'],
|
||||
['salad', 'cold', 'Asia', 'baked', 2, 'Green papaya salad'],
|
||||
['salad', 'hot', 'Asia', 'baked', 2, 'Grilled Sesame Shrimp with Herb Salad'],
|
||||
|
||||
['coffee', 'hot', 'Worldwide', 'boiled', 2, 'Espresso'],
|
||||
['coffee', 'warm', 'Worldwide', 'boiled', 2, 'Latte'],
|
||||
['coffee', 'cold', 'Worldwide', 'boiled', 2, 'Cappuccino'],
|
||||
|
||||
['coffee', 'hot', 'Europe', 'boiled', 2, 'Affogato'],
|
||||
['coffee', 'warm', 'Europe', 'boiled', 2, 'Botz'],
|
||||
['coffee', 'cold', 'Europe', 'boiled', 2, 'Affogato'],
|
||||
|
||||
['coffee', 'hot', 'America', 'boiled', 2, 'Café de olla'],
|
||||
['coffee', 'warm', 'America', 'boiled', 2, 'Double Double Coffee'],
|
||||
['coffee', 'cold', 'America', 'boiled', 2, 'Pocillo'],
|
||||
|
||||
['coffee', 'hot', 'Asia', 'boiled', 2, 'Melya'],
|
||||
['coffee', 'warm', 'Asia', 'boiled', 2, 'borgia'],
|
||||
['coffee', 'cold', 'Asia', 'boiled', 2, 'Kaapi'],
|
||||
|
||||
['coffee', 'hot', 'Worldwide', 'mixed', 2, 'Nescafé'],
|
||||
['coffee', 'warm', 'Worldwide', 'mixed', 2, 'Moccona'],
|
||||
['coffee', 'cold', 'Worldwide', 'mixed', 2, 'Kenco'],
|
||||
|
||||
['coffee', 'hot', 'Europe', 'mixed', 2, 'Frappé'],
|
||||
['coffee', 'warm', 'Europe', 'mixed', 2, 'Marocchino'],
|
||||
['coffee', 'cold', 'Europe', 'mixed', 2, 'Shakerato'],
|
||||
|
||||
['coffee', 'hot', 'America', 'mixed', 2, 'Mazagran'],
|
||||
['coffee', 'warm', 'America', 'mixed', 2, 'Medici'],
|
||||
['coffee', 'cold', 'America', 'mixed', 2, 'Palazzo'],
|
||||
|
||||
['coffee', 'hot', 'Asia', 'mixed', 2, 'Qishr.'],
|
||||
['coffee', 'warm', 'Asia', 'mixed', 2, 'Egg Coffee'],
|
||||
['coffee', 'cold', 'Asia', 'mixed', 2, 'Yuanyang'],
|
||||
|
||||
['tea', 'warm', 'Asia', 'boiled', 2, 'Bubble Tea'],
|
||||
['tea', 'hot', 'Asia', 'boiled', 2, 'White Tea'],
|
||||
['tea', 'cold', 'Asia', 'boiled', 2, 'Pu Erh'],
|
||||
|
||||
['tea', 'warm', 'Asia', 'boiled', 4, 'Hong Kong-Style Milk Tea'],
|
||||
['tea', 'hot', 'Asia', 'boiled', 4, 'Darjeeling'],
|
||||
['tea', 'cold', 'Asia', 'boiled', 4, 'Butter Tea'],
|
||||
|
||||
['tea', 'warm', 'Europe', 'boiled', 2, 'Earl Grey'],
|
||||
['tea', 'hot', 'Europe', 'boiled', 2, 'Wild Lily Tea'],
|
||||
['tea', 'cold', 'Europe', 'boiled', 2, 'Chamomilla Bohemica'],
|
||||
|
||||
['tea', 'warm', 'America', 'boiled', 2, 'Argo Tea'],
|
||||
['tea', 'hot', 'America', 'boiled', 2, 'Bigelow Tea'],
|
||||
['tea', 'cold', 'America', 'boiled', 2, 'American Tea'],
|
||||
|
||||
['tea', 'warm', 'Worldwide', 'boiled', 2, 'Yellow tea'],
|
||||
['tea', 'hot', 'Worldwide', 'boiled', 2, 'Mulberry black tea'],
|
||||
['tea', 'cold', 'Worldwide', 'boiled', 2, 'Chai'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Worldwide', 'mixed', 2, 'Lager'],
|
||||
['non-alcho drink', 'hot', 'Worldwide', 'mixed', 2, 'Chocoart'],
|
||||
['non-alcho drink', 'cold', 'Worldwide', 'mixed', 2, 'Pucko'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Europe', 'mixed', 2, 'Pinolillo'],
|
||||
['non-alcho drink', 'hot', 'Europe', 'mixed', 2, 'Pópo'],
|
||||
['non-alcho drink', 'cold', 'Europe', 'mixed', 2, 'Pozol'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Asia', 'mixed', 2, 'Milo'],
|
||||
['non-alcho drink', 'hot', 'Asia', 'mixed', 2, 'Tejate'],
|
||||
['non-alcho drink', 'cold', 'Asia', 'mixed', 2, 'Soju'],
|
||||
|
||||
['non-alcho drink', 'warm', 'America', 'mixed', 2, 'Xicolatada'],
|
||||
['non-alcho drink', 'hot', 'America', 'mixed', 2, 'Swiss Miss'],
|
||||
['non-alcho drink', 'cold', 'America', 'mixed', 2, 'Mate'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Worldwide', 'boiled', 2, 'Barley water'],
|
||||
['non-alcho drink', 'hot', 'Worldwide', 'boiled', 2, 'Egg cream'],
|
||||
['non-alcho drink', 'cold', 'Worldwide', 'boiled', 2, 'Mulled apple juice'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Europe', 'boiled', 2, 'Cola Cao'],
|
||||
['non-alcho drink', 'hot', 'Europe', 'boiled', 2, 'Kókómjólk'],
|
||||
['non-alcho drink', 'cold', 'Europe', 'boiled', 2, 'Tascalate'],
|
||||
|
||||
['non-alcho drink', 'warm', 'Asia', 'boiled', 2, 'Choc-Ola'],
|
||||
['non-alcho drink', 'hot', 'Asia', 'boiled', 2, 'Akta-Vite'],
|
||||
['non-alcho drink', 'cold', 'Asia', 'boiled', 2, 'Banania'],
|
||||
|
||||
['non-alcho drink', 'warm', 'America', 'boiled', 2, 'Caipirinha'],
|
||||
['non-alcho drink', 'hot', 'America', 'boiled', 2, 'Pisco sour'],
|
||||
['non-alcho drink', 'cold', 'America', 'boiled', 2, 'Rum swizzle'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'mixed', 2, 'Lasagna'],
|
||||
['meal', 'hot', 'Worldwide', 'mixed', 2, 'Chicken Pot Pie'],
|
||||
['meal', 'cold', 'Worldwide', 'mixed', 2, 'Smothered Pork Chops'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'mixed', 2, 'Gumbo'],
|
||||
['meal', 'hot', 'Europe', 'mixed', 2, 'Chicken Tortilla Soup'],
|
||||
['meal', 'cold', 'Europe', 'mixed', 2, 'Potato Pinwheels'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'mixed', 2, 'Tex-Mex'],
|
||||
['meal', 'hot', 'Asia', 'mixed', 2, 'Manti'],
|
||||
['meal', 'cold', 'Asia', 'mixed', 2, 'Khichdi'],
|
||||
|
||||
['meal', 'warm', 'America', 'mixed', 2, 'Kansas City-style barbecue'],
|
||||
['meal', 'hot', 'America', 'mixed', 2, 'Barbecue in Texas'],
|
||||
['meal', 'cold', 'America', 'mixed', 2, 'Sloppy joe'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'boiled', 2, 'Hot dog'],
|
||||
['meal', 'hot', 'Worldwide', 'boiled', 2, 'Pesto Boiled Potatoes'],
|
||||
['meal', 'cold', 'Worldwide', 'boiled', 2, 'Spinach Soup'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'boiled', 2, 'Jambalaya'],
|
||||
['meal', 'hot', 'Europe', 'boiled', 2, 'Black Chickpeas'],
|
||||
['meal', 'cold', 'Europe', 'boiled', 2, 'Vegetable Soup'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'boiled', 2, 'Gumbo'],
|
||||
['meal', 'hot', 'Asia', 'boiled', 2, 'Dirty Rice'],
|
||||
['meal', 'cold', 'Asia', 'boiled', 2, 'Hawaiian haystack'],
|
||||
|
||||
['meal', 'warm', 'America', 'boiled', 2, 'Goetta'],
|
||||
['meal', 'hot', 'America', 'boiled', 2, 'Chaudin'],
|
||||
['meal', 'cold', 'America', 'boiled', 2, 'Goetta'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'baked', 2, 'Chicken Curry'],
|
||||
['meal', 'hot', 'Worldwide', 'baked', 2, 'Fugazza'],
|
||||
['meal', 'cold', 'Worldwide', 'baked', 2, 'Halloumi and watermelon'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'baked', 2, 'Moussaka'],
|
||||
['meal', 'hot', 'Europe', 'baked', 2, 'Köttbullar'],
|
||||
['meal', 'cold', 'Europe', 'baked', 2, 'Haggis'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'baked', 2, 'Hainanese Chicken Rice'],
|
||||
['meal', 'hot', 'Asia', 'baked', 2, 'Chicken bog'],
|
||||
['meal', 'cold', 'Asia', 'baked', 2, 'Yeung Chow fried rice'],
|
||||
|
||||
['meal', 'warm', 'America', 'baked', 2, 'Mexican pizza'],
|
||||
['meal', 'hot', 'America', 'baked', 2, 'California-style pizza'],
|
||||
['meal', 'cold', 'America', 'baked', 2, 'Chocolate pizza'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'mixed', 4, 'Pizza cake'],
|
||||
['meal', 'hot', 'Worldwide', 'mixed', 4, 'Pan Pizza'],
|
||||
['meal', 'cold', 'Worldwide', 'mixed', 4, 'Neapolitan pizza'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'mixed', 4, 'Palatschinken'],
|
||||
['meal', 'hot', 'Europe', 'mixed', 4, 'Currywurst'],
|
||||
['meal', 'cold', 'Europe', 'mixed', 4, 'Potica'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'mixed', 4, 'Sushi'],
|
||||
['meal', 'hot', 'Asia', 'mixed', 4, 'Satay'],
|
||||
['meal', 'cold', 'Asia', 'mixed', 4, 'Laksa'],
|
||||
|
||||
['meal', 'warm', 'America', 'mixed', 4, 'Simple Shepherd’s Pie'],
|
||||
['meal', 'hot', 'America', 'mixed', 4, 'Apple Pie'],
|
||||
['meal', 'cold', 'America', 'mixed', 4, 'American burnt onion dip'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'boiled', 4, 'Fries'],
|
||||
['meal', 'hot', 'Worldwide', 'boiled', 4, 'Cheese fondue'],
|
||||
['meal', 'cold', 'Worldwide', 'boiled', 4, 'Goulash'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'boiled', 4, 'Arancini'],
|
||||
['meal', 'hot', 'Europe', 'boiled', 4, 'Pierogi'],
|
||||
['meal', 'cold', 'Europe', 'boiled', 4, 'Waffles'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'boiled', 4, 'Tom Yum'],
|
||||
['meal', 'hot', 'Asia', 'boiled', 4, 'Calas'],
|
||||
['meal', 'cold', 'Asia', 'boiled', 4, 'Dim Sum'],
|
||||
|
||||
['meal', 'warm', 'America', 'boiled', 4, 'Glorified rice'],
|
||||
['meal', 'hot', 'America', 'boiled', 4, 'Hominy Grits'],
|
||||
['meal', 'cold', 'America', 'boiled', 4, 'Spring Rolls'],
|
||||
|
||||
['meal', 'warm', 'Worldwide', 'baked', 4, 'Fish and Chips'],
|
||||
['meal', 'hot', 'Worldwide', 'baked', 4, 'Fried Rice'],
|
||||
['meal', 'cold', 'Worldwide', 'baked', 4, 'Black Bean Burger'],
|
||||
|
||||
['meal', 'warm', 'Europe', 'baked', 4, 'Sweet Potato Pasta Bake'],
|
||||
['meal', 'hot', 'Europe', 'baked', 4, 'Oven-Baked Meatballs'],
|
||||
['meal', 'cold', 'Europe', 'baked', 4, 'Sheet-Pan Greek Chicken and Veggies'],
|
||||
|
||||
['meal', 'warm', 'Asia', 'baked', 4, 'Fish Balls'],
|
||||
['meal', 'hot', 'Asia', 'baked', 4, 'Thai Coconut Braised Chicken and Potatoes'],
|
||||
['meal', 'cold', 'Asia', 'baked', 4, 'Teriyaki Tofu and Broccoli'],
|
||||
|
||||
['meal', 'warm', 'America', 'baked', 4, 'Pecan pie with maple cream'],
|
||||
['meal', 'hot', 'America', 'baked', 4, 'Breaded Chicken Spinach Burgers'],
|
||||
['meal', 'cold', 'America', 'baked', 4, 'Oven-Baked Fajitas'],
|
||||
]
|
||||
|
||||
dish = uniq_val_from_data(training_data, 0)
|
||||
served = uniq_val_from_data(training_data, 1)
|
||||
origin = uniq_val_from_data(training_data, 2)
|
||||
cooked = uniq_val_from_data(training_data, 3)
|
||||
ingredients = uniq_val_from_data(training_data, 4)
|
||||
|
||||
# We can also use this function instead of the direct appending to the list
|
||||
'''
|
||||
rand_data = []
|
||||
|
||||
for each in range(0, len(training_data)-1):
|
||||
rand_data.append(uniq_val_from_data(training_data, each))
|
||||
'''
|
||||
|
||||
rand_data = [dish, served, origin, cooked, ingredients]
|
||||
|
||||
#print(len(training_data))
|
Loading…
Reference in New Issue
Block a user