Оновити 'raport.md'

This commit is contained in:
Serhii Hromov 2020-05-25 14:11:16 +00:00
parent 1055515c1d
commit bffbcbe2fc

View File

@ -9,32 +9,15 @@ Użyłem drzew decyzyjnych.
Potrawy, ich nazwa, rodzaj oraz charakterystyka.
menu = Context.fromstring(''' |meat|salad|meal|drink|cold|hot |
Pork | X | | | | | X |
Espresso | | | | X | | X |
Latte | | | | X | | X |
Green Tea | | | | X | X | |
Greek Salad| | X | | | X | |
Pizza | | | X | | | X |''')
tree_format = ["dish", "served", "price", "origin", "cooked", "ingredients", "name"]
Dane uczące:
training_data = [
['meat','hot','Pork'],
['salad','cold','Greek Salad'],
['drink','hot','Espresso'],
['drink','hot','Latte'],
['drink','cold','Green Tea'],
['meal','hot','Pizza'],
['meal','cold','Wheat Pita'],
]
dish - (salad/soup/meal/coffee/tea/non-alcho drink)
served - (cold/hot/warm)
origin - (Worldwide/America/Europe/Asia)
cooked - (baked/boiled/mixed)
ingridients - (2/4)
Dane testowe jest tworzone losowo w funkcji:
@ -51,17 +34,14 @@ Dane testowe jest tworzone losowo w funkcji:
order.append(tmpr[0])
order.append('order')
return order
### Implementacja
####Drzewo:
Klasy:
Klasa Question
#####Question
class Queestion:
def __init__(self, col, value):
@ -73,7 +53,7 @@ Klasy:
def __repr__(self):
#just to print
Klasa Node
#####Node
class Decision_Node():
#contain the question and child nodes
@ -91,7 +71,6 @@ Klasy:
### Biblioteki
* concepts
* random
* numpy